
PXE Engineering

Intel Architecture Labs

PXE
Product Development Kit

Instructions
Version 2.2

March 20, 1998

Intel Corporation Page ii March 20, 1998

Intel Corporation assumes no responsibility for errors or omissions in this guide. Nor does Intel make any
commitment to update the information contained herein.

✶ Other product and corporate names may be trademarks of other companies and re used only for
explanation and to the owners’ benefit, without intent to infringe.

Copyright 1998 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

Intel Corporation Page iii March 20, 1998

Contents

1. LICENSE __ 1

2. INTRODUCTION___ 3
2.1 INTENDED AUDIENCE__ 3
2.2 EQUIPMENT NEEDED __ 3
2.3 WFM TEST COMPLIANCE: DISCLAIMER__ 4
2.4 RELATED DOCUMENTS___ 4

3. PDK INSTALLATION AND SETUP ___ 5
3.1 OVERVIEW __ 5
3.2 SETTING UP THE SERVER(S) ___ 5
3.3 SETTING UP THE CLIENT WORKSTATION(S) ___ 8
3.4 CONFIGURING THE TEST SERVER SERVICES___ 8

4. LSA2: INTEL PXE __ 9
4.1 INSTALLATION ___ 9
4.2 SETUP AND OPERATION ___ 10
4.3 LSA2 STATUS AND ERROR MESSAGES ___ 11

5. PXE SERVICES ___ 15
5.1 OVERVIEW ___ 15
5.2 PXE PROXYDHCP SERVICE ___ 15
5.3 MULTICAST TRIVIAL FTP (MTFTP) SERVICE __ 15
5.4 PROTOCOL SPECIFICATION ___ 15

6. SERVICES AND REGISTRY CONFIGURATION __ 21
6.1 OVERVIEW ___ 21
6.2 PXE NT SERVICES CONFIGURATION ___ 21
6.3 LOCATING BSTRAP BOOTSERVER FILES___ 23
6.4 LOCATING BOOTSERVER FILES OTHER THAN BSTRAP __ 23
6.5 BOOTSERVER DIRECTORY INCLUDED IN THE PDK___ 24
6.6 CREATING NEW DOS BOOTFILES ___ 24
6.7 ADDING MENU OPTIONS __ 25
6.8 REGISTRY ENTRIES __ 26

7. TESTING PXE __ 29
7.1 TESTS PROVIDED BY PDK ___ 29
7.2 TEST LOGS___ 30
7.3 INITIATING THE TESTS __ 32

8. REVISION HISTORY __ 33
8.1 PXE BOOT ROM__ 33
8.2 PXE SERVICES__ 37

9. BIOS SUPPORT ___ 38
9.1 OVERVIEW ___ 38
9.2 GUID___ 38
9.3 REMOTE WAKE UP SOURCE__ 44
9.4 BOOTSTRAPS ___ 45
9.5 MEMORY MANAGEMENT __ 48

10. THIRD PARTY DESIGN SUPPORT __ 50

11. LSA2 OPERATION AND TROUBLESHOOTING FAQS_____________________________________ 51

Intel Corporation Page 1 March 20, 1998

1. License

INTEL END USER SOFTWARE LICENSE AGREEMENT

IMPORTANT: READ BEFORE COPYING, INSTALLING OR USING.

BY USING THIS SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
AGREEMENT. DO NOT USE THIS SOFTWARE UNTIL YOU HAVE CAREFULLY READ AND
AGREED TO THE FOLLOWING TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THE
TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE SOFTWARE FILES AND ANY
ACCOMPANYING ITEMS AND DO NOT COPY, INSTALL OR USE THE SOFTWARE.

IF YOU USE THIS SOFTWARE, YOU WILL BE BOUND BY THE TERMS OF THIS AGREEMENT AS
FOLLOWS:

LICENSE: Intel Corporation ("Intel") grants you a non-exclusive, royalty-free, copyright license to the
enclosed software program and materials in object code format, ("the Software") subject to the terms
herein. No other license is granted except as expressly provided herein. You will not use, copy, modify,
rent, distribute, sell nor transfer the Software nor any portion thereof except as expressly provided in this
Agreement.

YOU MAY:
1. Install a copy of the Software on one or more computers for internal use only and for the sole

purpose of testing PC systems for adherence to the Wired for Management Baseline
Specification;

2. Copy the Software solely for backup or archival purposes and for internal transfer to another user
in your company who agrees to the terms of this Agreement.

YOU WILL NOT:
1. Sublicense the Software;

2. Reverse engineer, decompile or disassemble the Software;

3. Copy the Software, in whole or in part, except as specifically provided for in this Agreement;

4. Distribute or transfer the Software outside your company.

TRANSFER: You may transfer a copy of the Software to another person in your company (i.e., the
company which was originally granted access to this Software by Intel) on the condition that a copy of this
Agreement accompanies the transferred copy and the receiving party agrees to the terms of this
Agreement.

OWNERSHIP AND COPYRIGHT OF SOFTWARE: Title to the Software and all copies thereof remain
with Intel or its vendors. The Software is copyrighted and is protected by United States and international
copyright laws. You will not remove the copyright notice from the Software. You agree to prevent any
unauthorized copying of the Software. Except as otherwise expressly provided, Intel does not grant any
express or implied right to You under Intel patents, copyrights, trademarks or trade secret information.

WARRANTY DISCLAIMER: The Software is provided "AS IS" without warranty of any kind.

INTEL MAKES NO WARRANTIES OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY,
AND EXPRESSLY DISCLAIMS WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, AND FITNESS FOR ANY PARTICULAR PURPOSE. INTEL
WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, INSTALLATION, TRAINING OR OTHER
SERVICES. INTEL WILL NOT PROVIDE ANY UPDATES, ENHANCEMENTS OR EXTENSIONS.

Intel further does not warrant or assume any responsibility for the accuracy or completeness of the
information, text, graphics, links or other items contained in the software. Intel may make changes to the
Software or to any products described therein at any time without notice.

Intel Corporation Page 2 March 20, 1998

LIMITATION OF LIABILITY: IN NO EVENT SHALL INTEL OR ITS VENDORS BE LIABLE FOR ANY
INDIRECT, INCIDENTAL, SPECULATIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, LOSS OF
DATA OR INTERRUPTION OF BUSINESS, WHETHER UNDER THIS AGREEMENT OR OTHERWISE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TERMINATION OF THIS LICENSE: Intel may terminate this Agreement at any time if you are in breach
of any of its terms and conditions. Upon termination, you will immediately destroy the Software or return all
copies of the Software and documentation to Intel at Intel’s sole discretion.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Software and documentation were developed at
private expense and are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the
Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its
successor. Use of the Software by the Government constitutes acknowledgment of Intel’s proprietary right
to them.

EXPORT LAWS: You will not export/re-export the Software in violation of the laws, regulations, orders or
other restrictions of the U.S. Export Administration Regulations.

APPLICABLE LAW: This Agreement is governed by the laws of the United States and the State of
Delaware, including patent and copyright laws, without regard to its conflict of law provisions.

Intel Corporation Page 3 March 20, 1998

2. Introduction

This PDK includes a test environment and a series of tests to provide functional and stress testing of PXE
Boot ROMs and the PXE APIs. It also includes services necessary for the test server.

2.1 Intended Audience
This PDK is intended for

• Developer’s implementing PXE

• Boot ROM OEMs
• Network Interface OEMs
• Possibly PC System OEMs

• OEMs who provide non-PXE elements which WfM requires for PXE support

• PC System OEMs
• BIOS OEMs

• OEMs who are developing “Bootservers” to inter-operate with PXE.

2.2 Equipment Needed
The following table provides a guide to what a particular OEM would be testing for compliance, and what
other compliant elements would be required to successfully complete the tests. For example, a “Network
Interface OEM” would be testing their implementation of PXE for their NIC. In addition to their “test unit”
(the PXE enabled NIC), they would also need a WFM compliant PC system in which to install their NIC for
the tests.

Equipment Needed

OEMs
WfM

compliant
PC HW,

BIOS, and
PXE

WfM
compliant

PC HW and
BIOS

WfM
compliant

PXE enabled
NIC

WfM
compliant

PC HW

WfM
compliant

BIOS

WfM
PXE PDK
test setup

BIOS
OEMs

NA NA Needed in
addition to

test unit

Needed in
addition to

test unit

Test Unit Needed in
addition to

test unit
Boot ROM

OEMs
NA Needed in

addition to
test unit

Test Unit NA NA Needed in
addition to

test unit
Network
Interface

OEMs

NA Needed in
addition to

test unit

Test Unit NA NA Needed in
addition to

test unit
PC System

OEMs
Test Unit
(if network
interface in

PC)

Test Unit
(if no network
interface in

PC)

Needed in
addition to

test unit
(if no network
interface in

PC)

NA NA Needed in
addition to

test unit

Bootserver
OEMs

Needed
(if network
interface in

PC)

Needed
(if no network
interface in

PC)

Needed
(if no network
interface in

PC)

NA NA Needed

Intel Corporation Page 4 March 20, 1998

In addition to the equipment listed above, at least one test server and a test network are required. To
insure proper operation in a wide variety of environments it is strongly recommended that a second round
of testing is done that includes routers in the test network.

2.3 WfM Test Compliance: Disclaimer
Successfully executing the tests in this PDK neither guarantees overall Wired for Management test
compliance nor the functional integrity of the unit under test. While the tests do provide a good indication
of PXE WfM compliance, they do not define compliance. Definitive test requirements are found in “Wired
for Management Baseline Testing”. For the latest version of “Wired for Management Baseline Testing”
please go to:

ftp://download.intel.com/ial/wfm/wfmpro.pdf

2.4 Related Documents

2.4.1 Wired for Management

Wired for Management (WfM) Baseline Version 1.1a.
http://www.intel.com/managedpc/spec.htm

http://developer.intel.com/ial/wfm/design/index.htm

PXE PDK
http://www.intel.com/ial/wfm/tools/pxe/index.htm

PXE Powerpoint Presentation
http://www.intel.com/ial/wfm/class/index.htm

2.4.2 BIOS Specifications
BIOS Boot Specification
Version 1.01
January 11, 1996
http://www.phoenix.com/techs/specs.html

System Management BIOS Reference Specification
Version 2.1
June 16, 1997
http://www.phoenix.com/techs/smbios/htframe.html

POST Memory Manager Specification
Version 1.01
November 21, 1997

Plug and Play BIOS Specification
Version 1.0A
May 5, 1994
http://www.phoenix.com/techs/specs.html

2.4.3 Other PC System Documents

PC 98 System Design Guide, v1.0
http://developer.intel.com/design/pc98/

Network PC Design Guidelines, v1.0b
http://developer.intel.com/design/netpc/netovr.htm

Intel Corporation Page 5 March 20, 1998

3. PDK Installation and Setup

3.1 Overview
This section explains how to install the PDK and create a PXE test environment.

To install the PDK you will set up one or more Windows NT servers, execute the setup program, and
create image (boot) files.

In addition, you will set up at least one client PC containing a PXE option ROM. (Although multicast TFTP
can be used with a single client, to observe the full effect of master/slave multicast TFTP you need
multiple clients.) The PDK contains binaries and programming utilities to install PXE onto an Intel
EPRO100B NIC for the client.

Note: The test environment requires the use of a DHCP service. You should set up a test network apart
from your main network to avoid conflicting with production DHCP servers.

3.2 Setting up the Server(s)
The PXE test environment includes one or more Windows NT servers running Microsoft DHCP, PXE
ProxyDHCP, and the PXE MTFTPD services. (While it is not absolutely required, we suggest you use a
dedicated DHCP server and install ProxyDHCP and MTFTPD on a second server.)

The installed services provide the following capabilities:

• The DHCP service is responsible for allocating dynamic IP addresses.

• ProxyDHCP service supplements the DHCP service in two ways:

1. by providing DHCP options that cannot be programmed into the DHCP service

2. by handling the discovery process used by the booting client to locate a bootserver to provide boot
files.

• MTFTPD service provides both multicast and unicast TFTP services for downloading the boot files..

3.2.1 Setting up NT Server

• Install Windows NT Server (3.51 or later) on a one or more PCs.

• Install TCP/IP

• Install the Microsoft DHCP Server as part of the Windows NT installation on one server.

• Assign a static IP address to the server

• Create a valid scope on the server.

• If you are using the same host to provide the DHCP service and to be the test server, you must
add the DHCP Class Identifier option, tag value 60, to the DHCP service. This option must be set
to “PXEClient”. Do not add this tag if the DHCP service is provided on a host separate from the
test server.

• You will probably want to test that the network and DHCP are working properly by bringing up a DHCP
client on the network (such as an NT Workstation with DHCP enabled).

• Ensure the “GUEST” account is enabled.

• Copy the self-extracting executable PXEPDK.EXE to a temporary (“<temp>” in the following listing)
directory on the test server.

Ð Extract the setup files by running PXEPDK.EXE.

Intel Corporation Page 6 March 20, 1998

When you have run the self-extracting executable PXEPDK.EXE from a temporary directory, the following
directories and files will exist:

<temp>\readme.txt - Quick setup instructions

<temp>\setup.exe - Run this to install the PDK
<temp>\setup.ins - Setup data files
<temp>\setup.pkg - Setup data files
<temp>\wfm - Setup data files
<temp>\wfm.z - Setup data files
<temp>_setup.dll - Setup data files
<temp>_setup.lib - Setup data files
<temp>\lsa.z - Setup data files
<temp>\pdk.pak - Setup data files
<temp>_inst32i.ex_ - Setup data files

<temp>\pxe_bin\ - Directory for sample boot PROM binaries
<temp>\pxe_bin\e100b.nic - Data for Boot PROM on an E100B NIC with Flash
<temp>\pxe_bin\e100b.ld - Data for BIOS and E100B LAN on motherboard
<temp>\pxe_bin\futil.exe - Flash programming utility

<temp>\docs\ - Directory containing related documentation
<temp>\docs\pdkrel21.doc - PXE Product Development Kit Instructions

Now the server is ready for the PDK to be installed.

3.2.2 Running the PDK Setup Program

Ð Run <temp>\setup.exe.

During the PDK install the setup program will install services and set up registry keys. When the
installation process requests information on whether or not it is to be installed on the same machine that is
running the DHCP server, answer accordingly. If the answer to this dialog is no (the DHCP server is on
another machine) you will need to provide another DHCP server on the network for clients to boot. When
the install program completes, choose to reboot the system so the new services will be started correctly.

When you have installed the PDK, the following directories and files will exist below the install path:

<install directory>\PDK\ -PDK installation directory
+---DOCS -Directory holding relevant documents
| |--pdkrel21.doc -Release document for this PDK
+---SYSTEM -Directory holding executables and bootfiles
| |---mkimage.exe -Utility for creating bootfile file from

floppy
| |---pxeservices.exe -ProxyDHCP Service
| |---tftpd.exe -MTFTP Service
| |---tftpdmsg.dll -Event messages for MTFTP Service
| \---IMAGES -Directory for all bootfiles
| \---X86PC -Directory for X86PC specific bootfiles
| |--bstrap.0 -Initial boot strap file
| \---UNDI -Directory for UNDI specific bootfiles
| +---APITEST -Directory for APITest Service bootfiles
| | |--apitest.0 -Layer 0 bootfile for APITest
| | |--mktest.bat -Batch file for creating APITest.1 bootfile
| | \---MKIMAGE -Source files for APITest.1
| | |--autoexec.bat -Source files for APITest.1
| | |--config.sys -Source files for APITest.1
| | |--copylogs.bat -Source files for APITest.1
| | |--csagent2.exe -Source files for APITest.1
| | |--ndistest.bat -Source files for APITest.1
| | |--pxetest.exe -Source files for APITest.1
| | |--pxetest.txt -Source files for APITest.1
| | |--ramd.exe -Source files for APITest.1
| | \---NET -Source files for APITest.1
| | |--emsbfr.exe -Source files for APITest.1

Intel Corporation Page 7 March 20, 1998

| | |--ifshlp.sys -Source files for APITest.1
| | |--lmhosts -Source files for APITest.1
| | |--ndis.dos -Source files for APITest.1
| | |--ndishlp.sys -Source files for APITest.1
| | |--nemm.dos -Source files for APITest.1
| | |--net.exe -Source files for APITest.1
| | |--net.msg -Source files for APITest.1
| | |--netbind.com -Source files for APITest.1
| | |--netstart.bat -Source files for APITest.1
| | |--networks -Source files for APITest.1
| | |--nmtsr.exe -Source files for APITest.1
| | |--protman.dos -Source files for APITest.1
| | |--protman.exe -Source files for APITest.1
| | |--protocol -Source files for APITest.1
| | |--protocol.ini -Source files for APITest.1
| | |--system.ini -Source files for APITest.1
| | |--tcpdrv.dos -Source files for APITest.1
| | |--tcptsr.exe -Source files for APITest.1
| | |--tcputils.ini -Source files for APITest.1
| | |--tinyrfc.exe -Source files for APITest.1
| | |--umb.com -Source files for APITest.1
| | |--wfwsys.cfg -Source files for APITest.1
| \---DOSUNDI -Directory for DOSUNDI Service bootfiles
| |--dosundi.0 -Layer 0 bootfile for DOSUNDI
| |--mkdos.bat -Batch file for creating DOSUNDI.1 bootfile
| \---MKIMAGE -Source files for DOSUNDI.1
| |--autoexec.bat -Source files for DOSUNDI.1
| |--config.sys -Source files for DOSUNDI.1
| \---NET -Source files for DOSUNDI.1
| |--csagent2.exe -Source files for DOSUNDI.1
| |--emsbfr.exe -Source files for DOSUNDI.1
| |--ifshlp.sys -Source files for DOSUNDI.1
| |--lmhosts -Source files for DOSUNDI.1
| |--ndis.dos -Source files for DOSUNDI.1
| |--ndishlp.sys -Source files for DOSUNDI.1
| |--nemm.dos -Source files for DOSUNDI.1
| |--net.exe -Source files for DOSUNDI.1
| |--net.msg -Source files for DOSUNDI.1
| |--netbind.com -Source files for DOSUNDI.1
| |--netstart.bat -Source files for DOSUNDI.1
| |--networks -Source files for DOSUNDI.1
| |--nmtsr.exe -Source files for DOSUNDI.1
| |--protman.dos -Source files for DOSUNDI.1
| |--protman.exe -Source files for DOSUNDI.1
| |--protocol -Source files for DOSUNDI.1
| |--protocol.ini -Source files for DOSUNDI.1
| |--system.ini -Source files for DOSUNDI.1
| |--tcpdrv.dos -Source files for DOSUNDI.1
| |--tcptsr.exe -Source files for DOSUNDI.1
| |--tcputils.ini -Source files for DOSUNDI.1
| |--tinyrfc.exe -Source files for DOSUNDI.1
| |--umb.com -Source files for DOSUNDI.1
| |--wfwsys.cfg -Source files for DOSUNDI.1
\---TESTLOG -Directory for test logs
 |--file1 -Test files for NDIS testing
 |--file2 -Test files for NDIS testing
 |--file3 -Test files for NDIS testing
 |--file4 -Test files for NDIS testing
 |--file5 -Test files for NDIS testing
 |--file6 -Test files for NDIS testing
 |--file7 -Test files for NDIS testing
 |--file8 -Test files for NDIS testing
 |--file9 -Test files for NDIS testing
 |--file10 -Test files for NDIS testing
 |--file11 -Test files for NDIS testing
 |--testfile.exe -Executable to create test files FILE1-11

Intel Corporation Page 8 March 20, 1998

3.2.3 Create the boot files: APITEST.1 and DOSUNDI.1
Now you need to create APITEST.1 and DOSUNDI.1 boot files (these are not provided with the PDK).
To create these files:

Ð Create two 1.44MB MSDOS 6.22 boot floppies using FORMAT /S or SYS.COM from a DOS
machine.

Ð Label one diskette “APITest” and the other diskette “DOSUNDI”.

Ð On the APITEST disk add the following DOS files in the root directory:

HIMEM.SYS
RAMDRIVE.SYS
MORE.EXE
FC.EXE.

Ð On the DOSUNDI disk add the following DOS files in the root directory:

MORE.EXE.

Ð To create the APITest.1 bootfile, insert the diskette labeled “APITest” in the drive and run the
batch file :

<install directory>\ PDK\system\images\x86pc\undi\APITest\mktest.bat

Ð To create the DOSUNDI.1 bootfile, insert the diskette labeled “DOSUNDI” in the drive and run the
batch file :

<install directory>\ PDK\system\images\x86pc\undi\DOSUNDI\mkdos.bat

When the mktest.bat and mkdos.bat files execute they will copy additional files to the diskette. Then a
sector by sector image of the diskette is read into a file (either APITest.1 or DOSUNDI.1) and the file is
placed into the appropriate directory (either APITest or DOSUNDI). This creates the boot files that are
downloaded and booted by the client

If you want to change the contents of the images, modify the files in the APITest or DOSUNDI directories
and run the batch files again. As an example, you may want to automatically log in to a server and run a
test suite of your own by adding commands to the AUTOEXEC.BAT file in the DOSUNDI subdirectory.

Caution!!: File size, order of operation, resulting memory footprint, etc are all critical to correct operation. Be
aware of these restrictions and change image content with care and only if necessary.

3.3 Setting up the Client Workstation(s)
Please see section 4 below.

3.4 Configuring the Test Server Services
Please see sections 5 and 6 below

Intel Corporation Page 9 March 20, 1998

4. LSA2: Intel PXE

LSA2 (LANDesk Service Agent) is Intel’s implementation of PXE.

Included in this PDK is a binary (e100b.nic) and a flash programming utility (FUTIL.EXE) to allow installing
LSA onto an Intel EtherExpress Pro/100B (E100B) network interface card (NIC).

Also included is a binary (E100B.LD) that may be integrated into the BIOS of platforms which contain the
Intel EtherExpress Pro/100B (E100B) network interface on the motherboard. Use of this binary requires
building the BIOS with the binary and then updating the BIOS of the system under test. This operation will
normally only be done by the BIOS engineering department of the motherboard manufacturer.

These binaries are provided to allow creating a known good PXE NIC for verifying the test environment or
for use in testing the BIOS or a non_lan_on_motherboard PC.

Note, per the PDK license you may not redistribute these binaries. They are provided for test purposes
only.

4.1 Installation
You can program the PXE Boot PROM code, e100b.nic, into the FLASH memory on an E100B card using
the command: futil e100b.nic

You can incorporate the BIOS-based PXE Boot PROM code (E100B.LD) into your client two ways. The
first way is to program the image into the FLASH memory on an E100B card using
the command: futil e100b.ld

FUTIL.EXE documentation.
(This following is also displayed by typing: FUTIL /?)

[FUTIL ver 2.16] - Intel PCI NIC FLASH Update Utility
Copyright (C) 1995,1996 Intel Corporation. All rights reserved.

Usage: FUTIL options command/filename

Options:

 -A20=#
 This option forces the use of a specific A20 gate service.
 If this option is not specified, the A20 gate service will
 be determined through software.
 A20 services: 1=XMS, 2=Int15, 3=Port92

 -bus=# -dev=# -func=#
 Specify PCI bus/device/function numbers of Intel PCI
 network adapter to be programmed. If not specified,
 -bus, -dev and -func will default to all detected
 Intel PCI network adapters.

Commands:

 -erase
 Erases the contents of the FLASH memory.

 Filename
 Program a raw binary image into the FLASH memory.

Exit codes:
 0 := All FLASH operations completed successfully.
 1 := Bad command line parameter.
 2 := No supported Intel PCI network adapters detected.
 3 := No supported FLASH devices detected.
 4 := FLASH operation failed
 5 := Image file is missing or corrupted.

Intel Corporation Page 10 March 20, 1998

The second way is to incorporate the BIOS-based PXE Boot PROM code (E100B.LD) into your client is to
include the BIOS-based image (E100B.LD) as an option ROM image in your system BIOS image (as you
would include a video option ROM image). You must use your own BIOS programming utility to program
this BIOS image into the motherboard’s FLASH memory.

4.2 Setup and Operation

4.2.1 CMOS Setup
After installing LSA onto the NIC or motherboard you will need to insure the NIC is the primary boot
device. The mechanism for doing this will vary from system to system, but generally you will need to enter
setup during POST, locate the boot order setting, and make the NIC the first boot device.

The ability to make NIC the first boot device depends on underlying BIOS support. WfM compliance
requires BIOS Boot Spec support. If this is present then setting the boot order should not be a problem. If
you are testing without a compliant platform you may still be able to reorder the NIC to the first boot device
in POST setup. Failing this, LSA provides a proprietary mechanism that may allow setting the NIC to first
in boot order. This mechanism is described below.

<Ctrl+T> Bootstrap interrupt 18h/19h toggle

When a NIC based LSA2 is being initialized in a BIOS that does not support Plug and Play BIOS Boot
Specification function 60h (Get Version and Installation Check), the user needs to decide whether to use
bootstrap interrupt 18h (in some newer BIOS’s that support network boot devices) or 19h (in legacy
Biopsies).

During option ROM initialization LSA2 will display one of these messages:

• PXE-M04: Hooking bootstrap interrupt 18h

• or PXE-M04: Hooking bootstrap interrupt 19h

While this message is being displayed, the user can press <Ctrl+T> to toggle between 18h and 19h.
Which interrupt is to be used will be stored in bit 0Eh of the Vendor Extension word (3Bh) in the EEPROM
on the NIC.

The LSA2 boot ROM may not work properly if the bootstrap interrupt is set incorrectly. Possible problems
are:

1. LSA2 will not boot. You will see the PXE-M04 message, but will not see the LSA2 copyright message.
This will happen if interrupt 18h is used in a legacy BIOS that has a bootable floppy or hard disk
installed.

2. LSA2 always boots first, even though 'Network' is not the first item in the BIOS startup list. This can
happen if interrupt 19h is used in a newer interrupt 18h BIOS.

 <Esc> or <Ctrl+C> Cancel network boot

Once the NIC with LSA2 has been selected as the network boot device, the user can cancel the network
boot at any time by pressing <Esc> or <Ctrl+C>. When one of these keys is pressed, LSA2 will reset the
NIC, remove itself from RAM and return control to the BIOS.

4.2.2 Time-outs and Retries

4.2.2.1 DHCP

Four retries using 4, 8, 16 then 32 seconds, for a total of 60 seconds.

4.2.2.2 BINL

Three retries using 4, 8 then 16 seconds, for a total of 28 seconds.

Intel Corporation Page 11 March 20, 1998

4.2.2.3 TFTP Open

Six retries, each using 4 seconds.
The first three retries use IP port specified by caller.
The last three reties use default TFTP IP port (69).

4.2.2.4 MTFTP Open

Initial time-out sent by DHCP/Proxy server (defaults to 4 seconds).
Six retries, each using initial time-out.
After six retries, boot ROM will try TFTP open.

4.2.2.5 TFTP/MTFTP Read

Initial time-out delay is .25 seconds.
Up to eight packets can be lost in one session.
Each lost packet will cause a time-out and increase the time-out delay by 1 second.

4.3 LSA2 Status and Error Messages

All LSA2 message are prefixed with ’PXE-’. This prefix is used by to identify messages from PXE
(Preboot eXecution Environment) compatible boot devices.

LSA2 displays five types of messages:

1. Version and copyright messages.

2. Network communication status:

3. TFTP Messages: PXE-Txx:

4. Error messages: PXE-Exx:

5. Status messages: PXE-Mxx:

4.3.1 Version and Copyright Messages
Intel LANDesk (R) Service Agent, version x.xxx Copyright (C) 1997 Intel Corporation. All rights reserved.

This message is displayed once by each copy of LSA2 that boots.

4.3.2 Network Communication Status
DHCP...

Is displayed when DHCP Discover packet is sent out. Each ’.’ represents a transmitted packet.
LSA2 will retry four times, the first timeout is four seconds, each retry will double the timeout
value. LSA2 will wait a maximum of one minute before giving up on the DHCP/BOOTP server.

MTFTP...

Displayed during MTFTP Open requests. Each ’.’ represents a transmitted packet. LSA2 will
retry MTFTP a total of eight times, four with the supplied server and client ports and then four
more with the default server and client ports. Each timeout is four seconds. If MTFTP fails to
open, LSA2 will switch to TFTP.

TFTP...

Displayed during TFTP Open requests. TFTP also reties a total of eight times, like MTFTP.

4.3.3 TFTP Messages
PXE-T01: File not found

Requested file was not found on the TFTP server.

PXE-T02: Access violation
TFTP server does not have access writes to requested file.

Intel Corporation Page 12 March 20, 1998

PXE-T08: No multicast address
Requested file does not have a multicast address assigned to it.

4.3.4 LSA2 Error Messages
PXE-E00: There is no free memory between 480K and 640K.

LSA2 requires a 64 Kbyte block of base memory. It looks for a block of zero-filled memory
between 480K and 640K. If it cannot find one, it will not boot.

PXE-E01: PCI Vendor and Device IDs do not match!
This message should never be seen in a production BIOS. The only time this message can
be displayed is if the PCI BIOS tries to initialize the LSA2 ROM with invalid PCI
bus/device/function numbers in AX. Refer to the PCI BIOS Specification for more information
about the interaction between the PCI BIOS and PCI option ROMs.

PXE-E03: Extended memory copy of LSA2 has been corrupted.
This message is only displayed by LoM (LAN-on-Motherboard) versions of LSA2. During
option ROM initialization, LSA2 is copied into upper memory (between C8000h and F0000h)
by the BIOS. LSA2 then allocates a block of extended memory and copies itself into the
allocated memory. LSA2 will then reduce the amount of used upper memory to 2 Kbytes (it
started out using about 29 Kbytes). The image of LSA2 in extended memory can become
corrupted if the BIOS, or other option ROMs, use the extended memory allocated by LSA2.

LSA2 uses two methods to allocate extended memory. If the BIOS supports POST Memory
Manager, LSA2 will use it. If the BIOS does not support POST Memory Manager, LSA2 will
chain BIOS interrupt 15h and reduce the amount of extended memory reported by service
AH=88h (Get Extended Memory Size).

PXE-E04: Error reading PCI configuration space.
This message is displayed on a PCI NIC (not LOM) when the PCI configuration space cannot
be read using the PCI BIOS services. This message can be caused by a failing PCI controller
on the NIC.

PXE-E05: EEPROM checksum error.
The message is displayed on when the EEPROM checksum is not valid. This message can
occur if the system is turned off when the NIC EEPROM is being updated.

PXE-E10: ARP canceled by keystroke.
This message is displayed when <Esc> or <Ctrl+C> is pressed during ARP negotiation.

PXE-E11: ARP timeout.
This message is displayed when LSA2 cannot complete ARP negotiation.

PXE-E20: BIOS extended memory copy failed.
The BIOS returned an error during an extended memory copy. This should never happen.

PXE-E31: TFTP open canceled by keystroke.
This message is displayed when <Esc> or <Ctrl+C> is pressed during TFTP open negotiation.

PXE-E32: TFTP open timeout. Make sure TFTP server is running.
This message is displayed if TFTP open negotiation cannot be completed.

PXE-E34: TFTP read canceled by keystroke.
This message is displayed when <Esc> or <Ctrl+C> is pressed during the TFTP read
process.

PXE-E35: TFTP read timeout. Make sure TFTP server is running.
This message is displayed if the TFTP connection is lost.

PXE-E38: TFTP cannot open connection. Check network cable.
This message is displayed if the network boot PROM could not transmit the TFTP open
request packet.

Intel Corporation Page 13 March 20, 1998

PXE-E39: TFTP cannot read from connection. Check network cable.
This message is displayed if the network boot PROM could not read a TFTP packet or
transmit an ACK packet.

PXE-E3B: TFTP error - file not found.
The requested file is not on the server. Check the pathname of the requested file. Make sure
it is typed in correctly.

PXE-E3C: TFTP error - access violation.
The TFTP service does not have permission to read the requested file. Check the
permissions on the file and the directory. Make sure the TFTP service has permission to read
the requested file.

PXE-E40: BOOTP canceled by keystroke.
BOOTP negotiation has been canceled by <Esc> or <Ctrl+C>.

PXE-E43: BOOTP cannot find bootfile name.
LSA2 will only display this message if there is no ProxyDHCP reply and the first BOOTP reply
does not have the bootfile field filled in.

PXE-E50: DHCP canceled by keystroke.
DHCP negotiation has been canceled by <Esc> or <Ctrl+C>.

PXE-E51: DHCP timeout. Make sure DHCP server is running.
This message is displayed if DHCP negotiation cannot be completed.

PXE-E53: DHCP cannot find bootfile name.
LSA2 will only display this message if there is no ProxyDHCP replay and the first DHCP reply
does not have the bootfile field filled in.

PXE-E62: Network media (wire) test failure, check cable.
This message is displayed when the network connection is first initialized, and there is no
active network cable connected.

PXE-E91: MTFTP open canceled by keystroke.
This message is displayed when <Esc> or <Ctrl+C> is pressed during MTFTP open
negotiation.

PXE-E92: MTFTP open timeout.
This message is displayed if MTFTP open negotiation cannot be completed.

PXE-E93: MTFTP unknown opcode.
This message should never be seen. If this message is displayed, the TFTP server sent a
packet with an unsupported TFTP opcode.

PXE-E94: MTFTP read canceled by keystroke.
This message is displayed when <Esc> or <Ctrl+C> is pressed during the MTFTP read
process.

PXE-E95: MTFTP read timeout.
This message is displayed if the MTFTP connection is lost.

PXE-E98: MTFTP cannot open connection.
This message is displayed if the network boot PROM could not transmit the MTFTP open
request packet.

PXE-E99: MTFTP cannot read from connection.
This message is displayed if the network boot PROM could not read a MTFTP packet or
transmit an ACK packet.

PXE-E9A: MTFTP too many packages. Reboot and try again.
This message should never be displayed. This message is caused by increasing the size of a
file on the TFTP server, while there is an MTFTP slave that is waiting to re-open the changed
file.

Intel Corporation Page 14 March 20, 1998

PXE-E9B: MTFTP error - file not found.
The requested file is not on the server. Check the pathname of the requested file. Make sure
it is typed in correctly.

PXE-E9C: MTFTP error - access violation.
The MTFTP service does not have permission to read the requested file. Check the
permissions on the file and the directory. Make sure the MTFTP service has permission to
read the requested file.

4.3.5 LSA2 Status Messages
PXE-M01: No extended memory services. PROM image will stay in UMB.

This message should never be seen. LSA2 developers should be notified.

PXE-M04: Hooking bootstrap interrupt 18h.
While this message is displayed, the user can toggle between bootstrap interrupts 18h and
19h, by pressing <Ctrl+T>. This feature is only available on LSA2 NICs.

PXE-M0F: Exiting LANDesk Service Agent.
This message is seen when a network boot is not performed. This is the last message
displayed by LSA2 before control is returned to the system BIOS.

PXE-M60: NIC driver cannot initialize NIC for multicast.
This message is displayed if the NIC driver cannot initialize the NIC for multicast. This
message is displayed if the NIC hardware does not support multicast addresses or the NIC
driver is not supporting multicast addresses in software.

Intel Corporation Page 15 March 20, 1998

5. PXE Services

5.1 Overview
The PDK includes two services: ProxyDHCP and Multicast Trivial FTP (MTFTPD).

ProxyDHCP responds to DHCP packets sent by the client. ProxyDHCP provides the client with the
information needed to download bootfiles. This information is provided in the form of DHCP options.

MTFTPD provides multicast and unicast TFTP capability. The client uses this service to download
bootfiles.

5.2 PXE ProxyDHCP Service
Depending on how it is configured, ProxyDHCP responds to:

• DHCP Discover packets unicast, multicast, or broadcast by the client to port 67
• Or to DHCP Discover packets unicast or multicast to port 4011
• Or to DHCP Request packets unicast to port 4011

Flags stored in the registry determine the listening ports and transmission methods used by ProxyDHCP
and the client. These are described in the section on configuration.

In addition to those DHCP options required by the DHCP protocol, the packet ProxyDHCP returns to the
client contains three categories of options:

1. DHCP options the client can use to identify the server responding,
2. DHCP options the client needs to download the bootfile
3. DHCP options the bootfile will use once it begins executing.

The client specifies the service it is trying to discover through the vendor option PXE_BOOT_ITEM (value
71). This option contains a service number and the number of the bootfile the client is requesting. The
BSTRAP service provides the initial bootfile BSTRAP.0.

If the client packet received by ProxyDHCP does not contain the PXE_BOOT_ITEM option it is assumed the
client is requesting the BSTRAP.0 bootfile.

These options are described in the section 5.4 below.

5.3 Multicast Trivial FTP (MTFTP) Service
MTFTPD provides multicast and unicast file transfers. MTFTPD is based on the Trivial File Transfer
Protocol..

When MTFTPD receives a request for a multicast file transfer that is not currently in progress, it:

• locates the multicast IP transfer address for the file in the registry;
• appends the directory from the registry value BASE_DIR to the relative path requested, and
• then transmits the file on the multicast IP address.

5.4 Protocol Specification

5.4.1 Relationship to DHCP
The client may receive options from both a DHCP and a ProxyDHCP service. The client will always give
preference to options received from the DHCP server over ProxyDHCP responses.

5.4.2 Expanded DHCP Options
The following table contains all of the expanded DHCP options used in the PXE Bootserver protocol.

Intel Corporation Page 16 March 20, 1998

PXE DHCP Options (Full List)

Tag Name
Tag

Number
Length
Field Type(1) Data Field

Client machine
identifier (UUID/GUID).
DHCP_PLATFORMID

97 17 0=UUID Type 0 = UUID(16) Required
Note #1

Client network
interface identifier.
DHCP_NICIF

94 3-13 1 = UNDI
2 = PCI

3 = PnP

Type 1 = Major ver(1), Minor ver(1)
Type 2 = Vendor ID(2), Device ID(2),

Class Code(3), Rev(1), Sub-
Vendor ID(2), Sub-Device
ID(2)

Type 3 = EISA Device ID(4), Class
Code(3)

Byte order is defined by PCI and PnP
specs.

Required

Client system
architecture.
DHCP_SYSARCH

93 2 0 = IA x86 PC(1)
1 = NEC/PC98(1)
2 = etc.(1)

Required

Class Identifier
DHCP_CLASS

60 9 “PXEClient”
(This field must not be null terminated.)

Required

DHCP_VENDOR 43 Varies Encapsulated options below.
Multiple DHCP_VENDOR options can be used.

Required

PXE_MTFTP_IP 1 4 Multicast IP Address
Muticast IP address of bootfile.

PXE_MTFTP_CPORT 2 2 UDP Port Number INTEL ORDER
UDP port that client should monitor for MTFTP responses.

PXE_MTFTP_SPORT 3 2 UDP Port Number INTEL ORDER
UDP port that MTFTP servers are using to listen for
MTFTP open requests.

PXE_MTFTP_TMOUT 4 1 Open Timeout
Number of seconds a client will listen for activity before
trying to start a new MTFTP transfer.

PXE_MTFTP_DELAY 5 1 Reopen Timeout
Number of seconds a client will listen before trying to
restart a MTFTP transfer.

Note #2

PXE_DISCOVERY
_CONTROL

6 1 (Bit field. Bit 0 is least significant bit.)
bit 0 = If set, disable broadcast discovery.
bit 1 = If set, disable multicast discovery.
bit 2 = If set, only use/accept servers in

PXE_BOOT_SERVER.
bit 3-7 = Must be 0.
If this tag is not supplied, all bits assumed to be 0.

Discovery_MCast_Addr 7 4 Multicast IP-addr
Bootserver discovery multicast IP address. Bootservers
capable of multicast discovery must listen on this multicast
address.

Note #3

Intel Corporation Page 17 March 20, 1998

PXE DHCP Options (Full List)

Tag Name
Tag

Number
Length
Field Type(2) Data Field

PXE_BOOT
_SERVERS

8 varies Bootserver type(2)
Type 0 = PXE bootstrap

server
Type 1 = Microsoft

Windows NT
bootserver

Type 2 = Intel LCM
bootserver

Type 3 = DOS/UNDI
bootserver

Type 4 through 32767 =
reserved

Type 32768 through 65534
= vendor use

Type 65535 =
PXE API Test
server

IPcnt(1), IP-addr-
list(IPcnt*4), type(2)….
IPcnt cannot be 0

Bootservers must not
respond to discovery
requests of types that they do
not support.

Note #3

PXE_BOOT_MENU 9 varies Bootserver type(2)
Type 0 = reserved for local

boot

desclen(1), “description”,
Bootserver type(2)….

Boot “order” is implicit in the
menu order.

“desclen” is length of
“description”
“desclen” cannot be 0.

PXE_MENU_PROMPT 10 varies timeout(1), “prompt”
The timeout is the number of seconds to wait before auto-
selecting the first boot menu item. The prompt is displayed
followed by the number of seconds remaining before the
first item in the boot menu is auto-selected. If <F8> is
pressed, the menu will be displayed. If this option is not
provided, the menu must be displayed without prompt and
timeout. If the timeout is 0, the first item in the menu must
only be auto-selected. If the timeout is 255, the menu and
prompt must be displayed without auto-selecting or
timeout.

Note #4

Loader Options 64-127 varies (bootserver specific)
PXE_BOOT_ITEM 71 3 Bootserver type(2), layer(1)

Layer 0 = First file of selected bootserver type.
If this tag is missing, type 0 and layer 0 is assumed

Note #5

Intel Corporation Page 18 March 20, 1998

PXE DHCP Options (from Client WS to ProxyDHCP)

Tag Name
Tag

Number
Length
Field Type(1) Data Field

Client machine
identifier (UUID/GUID).
DHCP_PLATFORMID

97 17 0=UUID Type 0 = UUID(16) Required
Note #1

Client network
interface identifier.
DHCP_NICIF

94 3-13 1 = UNDI
2 = PCI

3 = PnP

Type 1 = Major ver(1), Minor ver(1)
Type 2 = Vendor ID(2), Device ID(2),

Class Code(3), Rev(1), Sub-
Vendor ID(2), Sub-Device
ID(2)

Type 3 = EISA Device ID(4), Class
Code(3)

Byte order is defined by PCI and PnP
specs.

Required

Client system
architecture.
DHCP_SYSARCH

93 2 0 = IA x86 PC(1)
1 = NEC/PC98(1)
2 = etc.(1)

Required

Class Identifier
DHCP_CLASS

60 9 “PXEClient”
(This field must not be null terminated.)

Required

DHCP_VENDOR 43 Varies Encapsulated options below.
Multiple DHCP_VENDOR options can be used.

Required

Loader Options 64-127 varies (bootserver specific)
PXE_BOOT_ITEM 71 3 Bootserver type(2), layer(1)

Layer 0 = First layer of selected bootserver type.
If this tag is missing, type 0 and layer 0 is assumed

Note #5

PXE DHCP Options (Returned to Client from ProxyDHCP)

Tag Name
Tag

Number
Length
Field Type(1) Data Field

Client machine
identifier (UUID/GUID).
DHCP_PLATFORMID

97 17 0=UUID Type 0 = UUID(16) Required
Note #1

Class Identifier
DHCP_CLASS

60 9 “PXEClient”
(This field must not be null terminated.)

Required

DHCP_VENDOR 43 Varies Encapsulated options below.
Multiple DHCP_VENDOR options can be used.

Required

PXE_MTFTP_IP 1 4 Multicast IP Address
Muticast IP address of bootfile.

PXE_MTFTP_CPORT 2 2 UDP Port Number INTEL ORDER
UDP port that client should monitor for MTFTP responses.

PXE_MTFTP_SPORT 3 2 UDP Port Number INTEL ORDER
UDP port that MTFTP servers are using to listen for
MTFTP open requests.

PXE_MTFTP_TMOUT 4 1 Open Timeout
Number of seconds a client will listen for activity before
trying to start a new MTFTP transfer.

PXE_MTFTP_DELAY 5 1 Reopen Timeout
Number of seconds a client will listen before trying to
restart a MTFTP transfer.

Note #2

Intel Corporation Page 19 March 20, 1998

PXE DHCP Options (Returned to Client from ProxyDHCP)
PXE_DISCOVERY
_CONTROL

6 1 (Bit field. Bit 0 is least significant bit.)
bit 0 = If set, disable broadcast discovery.
bit 1 = If set, disable multicast discovery.
bit 2 = If set, only use/accept servers in

PXE_BOOT_SERVER.
bit 3-7 = Must be 0.
If this tag is not supplied, all bits assumed to be 0.

Discovery_MCast_Addr 7 4 Multicast IP-addr
Clients use this address to discover bootservers if
PXE_DISCOVERY_CONTROL enables multicast
discovery.

Note #3

Tag Name
Tag

Number
Length
Field Type(2) Data Field

PXE_BOOT
_SERVERS

8 varies Bootserver type(2)
Type 0 = PXE bootstrap

server
Type 1 = Microsoft

Windows NT
bootserver

Type 2 = Intel LCM
bootserver

Type 3 = DOS/UNDI
bootserver???!

Type 4 through 32767 =
reserved

Type 32768 through 65534
= vendor use

Type 65535 =
PXE API Test
server

IPcnt(1), IP-addr-
list(IPcnt*4), type(2)….
IPcnt cannot be 0.

Bootservers must not
respond to discovery
requests of types that they do
not support.

Note #3

PXE_BOOT_MENU 9 varies Bootserver type(2)
Type 0 = reserved for local

boot

desclen(1), “description”,
Bootserver type(2)….

Boot “order” is implicit in the
menu order.

“desclen” is length of
“description”
“desclen” cannot be 0.

PXE_MENU_PROMPT 10 varies timeout(1), “prompt”
The timeout is the number of seconds to wait before auto-
selecting the first boot menu item. The prompt is displayed
followed by the number of seconds remaining before the
first item in the boot menu is auto-selected. If <F8> is
pressed, the menu will be displayed. If this option is not
provided, the menu must be displayed without prompt and
timeout. If the timeout is 0, the first item in the menu must
only be auto-selected. If the timeout is 255, the menu and
prompt must be displayed without auto-selecting or
timeout.

Note #4

Loader Options 64-127 varies (bootserver specific)
PXE_BOOT_ITEM 71 3 Bootserver type(2), layer(1)

Layer 0 = First file of selected bootserver type.
If this tag is missing, type 0 and layer 0 is assumed.

Note #5

Intel Corporation Page 20 March 20, 1998

PXE DHCP Options (Returned from ProxyDHCP) used by bootserver

Tag Name
Tag

Number
Length
Field Type(1) Data Field

Class Identifier
DHCP_CLASS

60 9 “PXEClient”
(This field does not need to be null terminated.)

Required

DHCP_VENDOR 43 Varies Encapsulated options below.
Multiple DHCP_VENDOR options can be used.

Required

Discovery_MCast_Addr 7 4 Multicast IP-addr
Bootserver discovery multicast IP address. Bootservers
capable of multicast discovery must listen on this multicast
address.

Note #1
See GUID programming notes in section 9.2.2 below
Note #2
These options define the client/server port numbers and open/re-open timeouts that must be used in
MTFTP open/read requests.
Note #3
These options control the type of discovery mechanisms used by clients. Clients must use discovery
methods in this order:

1. Multicast: If the client supports multicast discovery and multicast discovery is enabled and a
multicast discovery IP address is available, (PXE_DISCOVERY_CONTROL, Opt43 tag #6)

2. Broadcast: If broadcast discovery is enabled, (PXE_DISCOVERY_CONTROL, Opt43 tag #6 and
DISCOVERY_ MCAST_ADDR, Opt 43 tag #7))

3. Unicast: If a bootserver list is available, (PXE_BOOT_SERVERS, Opt 43 tag #8), or back to the
DHCP server if a bootserver list is not available.

Note #4
These options define the information displayed by the client, if any, during a network boot.
Note #5
This option is required to discover bootservers. Only the client may change the type field; either the client
or the server may change the layer field. Layer 0 always indicates the first bootfile for a particular
bootserver type. Only bootservers capable of providing the boot file requested in the PXE_BOOT_ITEM will
respond.

Intel Corporation Page 21 March 20, 1998

6. Services and Registry Configuration

6.1 Overview
This section discusses the registry values used to control the functions of PXE Bootservers.

6.2 PXE NT Services Configuration

6.2.1 ProxyDHCP
The listening ports used by the ProxyDHCP service are controlled by the registry flag UseDHCPPort.

• If this flag is set to 1, ProxyDHCP will open a TCP socket on port 67 and 4011.
• If this flag is set to 0, ProxyDHCP will open a TCP socket on port 4011 only.

If the ProxyDHCP service is running on the same host as the DHCP service, UseDHCPPort should be set to
0 because port 67 is used by the DHCP service. In this case, ProxyDHCP will process request packets
sent to port 4011.

6.2.2 Microsoft DHCP Service
If the ProxyDHCP service is running on the same host as the DHCP service, you must add the DHCP
Class Identifier option, tag value 60, to the DHCP service. This option must be set to “PXEClient”. When
a PXE Client receives this class option by itself from the DHCP service, the client will immediately unicast
a request to the ProxyDHCP server on port 4011 to complete the PXE DHCP configuration.

The purpose of defining option 60 to the DHCP service is so the client will receive the option as part of the
DHCP Offer packet. The content of option 60 is defined to be “PXEClient” and this is what informs the
client that PXE services are available on the same host as the DHCP service.

Specifically the client should receive the following byte sequence in the options section of the DHCP Offer
(all values shown in hex):

0x38 0x09 0x50 0x58 0x45 0x43 0x6c 0x69 0x65 0x6e 0x74

The first byte is the option number 60.
The second byte is the length of the option data, 9 bytes.
The remaining bytes are the ASCII codes for the characters “PXEClient”.

6.2.2.1 DEFINING OPTION 60

To make the DHCP service send this sequence of bytes you must define option 60 to the DHCP server as
a byte array and then define the value of the data portion of the option. The DHCP will attach the option
number (0x38) and the data length (0x09).

• Start the DHCP Manager
Start->Programs->AdministrativeTools (Common)->DHCP Manager

• In the panel labeled “DHCP Servers” double-click “Local Machine” to display the DHCP scopes
you have previously defined.

• Single-click on any one of the scopes to highlight it.
• With a scope highlighted, click on the menu DHCP Options->Default.
• Select the “New…” button to display the “Add Option Type” dialog box.
• In the “Name” field enter the text “Class ID”.
• Make sure the “Data Type” is set to “Byte” then click the “Array” checkbox so it is set.
• In the “Identifier” field enter “60”

Intel Corporation Page 22 March 20, 1998

• Click OK.

The dialog box titled “DHCP Options: Default Values” should be displayed. Click the drop-down arrow
on the “Option Name” drop-down list. Scroll to the entry for option 060 and click it. The drop-down list
should close and the “Option Name” box will have the text “060 Class ID” displayed.

Select the button “Edit Array… ” to display the “NumericValue Array Editor”.

Enter the following bytes one at a time in the edit box labeled “New Value:”. The bytes are entered in
decimal notation. After entering each value click the “Add->” button to add the byte to the list displayed in
the “Current Values” list box. Make sure the values are displayed in the correct order. The values should
be listed from top to bottom. Use the up and down arrows to the right of the “Current Values” list box to
adjust the position of a value if needed.

80 88 69 67 108 105 101 110 116

After all of the bytes have been entered, the last byte might be a 0x00 that was added by the DHCP
service. Delete this byte so you only have the 9 bytes that you entered.

Click OK to return to the “DHCP Options: Default Values” dialog. Review the values displayed in the
“Value” group using the scroll bar to move up and down in the list. If you need to make any corrections
select the “Edit Array” button and make the corrections needed.

Click OK to return to the DHCP Manager.

6.2.2.2 ASSIGNING THE OPTION TO THE SCOPES

Now you need to assign the option to one or more scopes. The easiest way to do this is to assign the
option globally.

With one of the scopes highlighted select the menu DHCP Options->Global to display the “DHCP
Options: Global” dialog box.

Scroll the “Unused Options” list to locate the option “060 Class ID”. Highlight the option then click the
“Add->” button to add the option to the list of “Active Options”. Click OK.

6.2.2.3 TESTING THE OPTION

The option is now assigned to all of your scopes. At this point you should test that the option is being
correctly sent to the client by performing a client boot while a packet sniffer captures the packets. Analyze
the DHCP Offer packet to be sure the option bytes are present.
Depending on the configuration of your routers, you may also have to define a value for the Router option.
This will ensure the client receives a default gateway IP address.

6.2.3 Multicast Trivial FTP Service(MTFTPD)
MTFTPD uses two registry values to enable it’s features: MCAST_ENABLE, and MTFTP_HIGH_PERFORMANCE.

The registry value MCAST_ENABLE enables multicasting. If multicasting is disabled MTFTPD will only
respond to unicast file transmission requests. You may need to disable multicast if your routers cannot be
configured to accept multicast transmissions.

The MTFTPD registry value MTFTP_HIGH_PERFORMANCE, determines whether files are transmitted in large
or small packets.

The TFTPD service provides two options for determining packet sizes; one for multi-cast and one for uni-
cast. Under multi-cast the server will send files using a packet size of 1456 bytes if the MTFTPD registry

Intel Corporation Page 23 March 20, 1998

value MTFTP_HIGH_PERFORMANCE is set to 1. If MTFTP_HIGH_PERFORMANCE is set to 0 512 byte packets are
used. Note that this size applies to all clients. Therefore, all of your clients must be capable of handling
the larger packet size to use in increased performance. Otherwise, set MTFTP_HIGH_PERFORMANCE zero.

For unicast TFTP, the client can negotiate a packet size from 512 bytes to 2560 bytes. The client must
use the TFTP block size option as specified in RFC 1783.

NOTE: Multicast TFTP is not fully supported by Windows NT® Server 3.51. If you install the PDK onto a
Windows NT® 3.51 server you will not be able to use multicast file transfer across routers. If you are not
crossing a router, then Windows NT® 3.51 will work properly. Windows NT® 4.0 works properly in both
cases and does not exhibit the problem just described.

6.3 Locating BStrap Bootserver Files
There is only one file in the BStrap Bootserver, BSTRAP.0. The only information needed to form a path to
BSTRAP.0 is the client system architecture. The client system architecture type is a two byte field
contained in the DHCP_SYSARCH option tag (value 93). The location of the BSTRAP.0 file is stored in the
registry key with the same name as the client system architecture.

The registry value PROC_ARCH contains a list of client system architecture values and the related text that
is used for the architecture specified registry key. In the PDK, for an Intel architecture, value 0, you will
see the text is “x86pc”. The relative path to the BSTRAP.0 file is then located in the registry key
ProxyDHCP\X86PC.

This key contains a value named Imagefile_Name that contains the lowest valid file layer number, the
highest valid file layer number, and the base name for the bootfile... In the PDK data in Imagefile_Name
is: BSTRAP

To determine the relative path for the BStrap bootfile the base filename, BSTRAP is appended to the text
for the client system architecture. Then the file layer number, 0, is appended to the file name. This
produces the relative path: X86PC\BSTRAP.0

The full path is formed by appending the relative path to the path stored in the MTFTPD value, BASE_DIR.
In the PDK this would form the path:

<install directory>\PDK\SYSTEM\IMAGES\X86PC\BSTRAP.0

6.4 Locating Bootserver Files other than BStrap
For bootservers other than BStrap, four pieces of data are required to form a full path to the NIC specific
bootfiles: the architecture type, the NIC type, the bootserver type and the file layer number.

The architecture type is a two byte field contained in the DHCP_SYSARCH option tag (value 93). This
value is converted to text that matches both the sub-directory name and the sub-key name through the
registry value “PROC_ARCH”

The NIC type is a variable length option with the tag DHCP_NICIF (value 94). The data in this option is
translated into text that represents the sub-directory and the sub-key. Currently there are three possible
NIC types: UNDI, PCI, and PnP. Sample text for each of them are:

UNDI-02-00
PCI-8086-0200-XXXXXX-XX-XXXX-XXXX
PNP-XXXX-XXXXXX

ProxyDHCP will search the registry for the key whose name has the longest match with the above
examples. This permits you to use shorter versions of the names for bootfiles that are not dependent on
the full designation for the NIC. For example, all of these are valid registry keys and directories for UNDI:

UNDI
UNDI-02
UNDI-03
UNDI-03-00

Intel Corporation Page 24 March 20, 1998

If all of these existed in the registry then, for an UNDI interface with major version 3 and minor version 0
the “UNDI-03-00” key/path would be selected. For a major version 2 and minor version 0, the “UNDI-02”
key/path would be used.

The bootserver type and file layer number come from the option PXE_BOOT_ITEM (value 71). These are
translated into text using the registry value Service_Types. Service_Types contains a list of service type
numbers and service names. Only those Service_Types supported by this host are listed. The service
names match the sub-keys and the directory path where the bootfiles are stored. The sub-keys contain a
value named Imagefile_Name that contains the base name for the file. The file layer number is appended
to the base name to form a full file name.

For instance, an UNDI compliant boot PROM on an X86 computer requesting file layer number 0
(APITest.0) of bootserver type 65535 (APITest)would result in retrieving the file name from the registry
value:

PXE\Bootserver\X86PC\UNDI\APITest\Imagefile_Name.

This registry value contains the base name for the bootfile, the lowest valid file layer number and the
highest valid file layer number.

In the PDK, the relative path to this file would be: X86PC\UNDI\APITest\APITest.0

The absolute path to the bootfile if formed by appending the relative path to the path contained in the
MTFTPD value, BASE_DIR.

6.5 Bootserver Directory Included in the PDK
The PDK will install “bootservers” for APITest and DOSUNDI. This means that clients will be able to
choose to remote boot the PXE WfM tests or DOS. The “images” directory contains an architecture
directory for each supported processor architecture, such as \X86PC.

The architecture subdirectory contains a NIC directory for each NIC that has a bootserver defined.

Typical NIC subdirectory values:

\UNDI
\PCI-8086-1229-020000-01
\PNP-8130-020000

Each NIC Directory contains a subdirectory for each supported bootserver. These subdirectories contain
the bootfiles for that architecture/NIC/bootserver combination.

Table 1 Sample Directory Structure
<install directory>\PDK\SYSTEM\IMAGES

\X86PC
BSTRAP.0

\UNDI
\APITest

APITEST.0
APITEST.1

\DOSUNDI
DOSUNDI.0
DOSUNDI.1

6.6 Creating New DOS Bootfiles
The utility MKIMAGE.EXE included in the PDK, is used to create a DOS bootfile (such as APITest.1). To
use this utility, you need to create a 1.44 MB MS-DOS* 6.22 boot diskette (using the DOS sys command
or format /s). You can leave the diskette as it is (containing only the MSDOS.SYS, IO.SYS, and
COMMAND.COM files), or add AUTOEXEC.BAT and executables, etc. Whatever you put on the disk
becomes part of the image.

Intel Corporation Page 25 March 20, 1998

Place this diskette in drive A: of a computer and run MKIMAGE.EXE from another drive. This writes an
image of the A: diskette into the current directory in a file named TEST.BIN. Rename this file to match
your bootserver name and place it in the appropriate as described above.

6.7 Adding Menu Options
To add menu options for additional bootfiles to download:

• Create new bootfiles in the appropriate directories
• Define the bootserver in the registry
• Define the bootfile in the registry
• Add the bootfiles to the MTFTPD list of files
• Add a menu option for the bootserver.

Section 3.2.3 above describes how to build new bootfiles. Once these bootfiles are created you must
store them in a directory that reflects the client architecture, NIC type, and bootserver name.

To define the bootserver in the registry you need to add the bootserver to the list of Service_Types
contained in the registry value “Service_Types”. Service_Types is a REG_MULTI_SZ value where each
string represents the bootserver number and the name of a bootserver. The bootserver name entered here
must match the sub-directory name and the name of the registry sub-key.

Next create a definition for the bootfile in the registry. To do this, create a sub-key under the appropriate
architecture type and NIC type. Give this sub-key the same name you used when you defined the
bootserver in the Service_Types registry value. Within this sub-key create a value named Imagefile_Name
of type REG_MULTI_SZ. The first string contains the lowest valid file layer number, the second string
contains the highest valid file layer number and the third string contains the base name for the bootfiles.

Under the MTFTPD key there is a sub-key named FILES. Each of the values under FILES represents a
file that MTFTPD can transmit using multicast transmission. Create a new value for each of the files you
have included in the bootserver. The name of the values is the relative path for the file starting with the
architecture type and ending with the full filename. The values are of type REG_SZ. The data for the
values is the multicast IP address for the file. These addresses are assigned dynamically by the MTFTPD
service. After adding files to this list you MUST restart the MTFTPD service.

Menus are specific to a particular client architecture and NIC type. This ensures clients sees only menu
options valid for their workstations. Locate the MENU value under the appropriate architecture and NIC
type sub-keys and add your menu entry to this list.

A menu entry consists of the number for the bootserver type and the text you want displayed to the user.

Intel Corporation Page 26 March 20, 1998

6.8 Registry Entries

Registry Keys for PXE Services
Key Name: SOFTWARE\Intel\PXE
Class Name:<NO CLASS>
Last Write Time: 11/24/97 - 1:12 PM

This is the root registry key for all
PXE Services.

Value 0
 Name: DomainName
 Type: REG_SZ
 Data:

Domain or workgroup name for this
server.

Value 1
 Name: IsDomain
 Type: REG_DWORD
 Data: 0

Indicates whether the DomainName
reflects a Workgroup or a Domain.

Value 2
 Name: ServerName
 Type: REG_SZ
 Data:

Computer name of this server.

MTFTPD
Key Name: SOFTWARE\Intel\PXE\MTFTPD
Class Name:<NO CLASS>
Last Write Time: 11/11/97 - 10:40 AM

Top Level for MTFTPD service.
Contains one sub-key, FILES.

Value 0
 Name: BASE_DIR
 Type: REG_SZ
 Data: <install directory>\PDK\SYSTEM\IMAGES

The base directory where bootfiles are
located. This path is prepended to the
partial path that the client requests.

Value 1
 Name: MCAST_CLNT_PORT
 Type: REG_SZ
 Data: 1758

The client port for MTFTPD

Value 2
 Name: MCAST_ENABLE
 Type: REG_DWORD
 Data: 0x1

Determines whether multicast is
enabled.
1 => Multicast Enabled
2 => Multicast Disabled

Value 3
 Name: MCAST_OPN_TO
 Type: REG_SZ
 Data: 1

Multicast open timeout.

Value 4
 Name: MCAST_REOPN_TO
 Type: REG_SZ
 Data: 2

Multicast reopen timeout.

Value 5
 Name: MCAST_SRVR_PORT
 Type: REG_SZ
 Data: 1759

The port where MTFTPD listens for file
transfer requests.

Value 6
 Name: MCAST_START_ADDRESS
 Type: REG_SZ
 Data: 224.1.1.1

The starting multicast IP address of
the range of addresses assigned to the
files.

Value 7
 Name: MTFTP_HIGH_PERFORMANCE
 Type: REG_DWORD
 Data: 0x1

Enables the use of large packets in
file transfers.
1 => Enabled
0 => Disabled

Key Name: SOFTWARE\Intel\PXE\MTFTPD\FILES
Class Name:<NO CLASS>
Last Write Time: 11/11/97 - 10:41 AM

Contains a set of registry values for
each file to be sent by MTFTPD. The
data for each value is the multicast
IP address for the file.

Value 0
 Name: X86PC\BSTRAP.0
 Type: REG_SZ
 Data: 224.1.1.1

BStrap.0 file. The IP address for
this file MUST be the same as the
value in Layer_0_IP.

Value 1
 Name: x86pc\undi\APITest\APITest.0
 Type: REG_SZ
 Data: 224.1.1.2

First bootfile for the API Test.

Value 2
 Name: x86pc\undi\APITest\APITest.1
 Type: REG_SZ
 Data: 224.1.1.3

Second bootfile for the API Test.

Intel Corporation Page 27 March 20, 1998

Registry Keys for PXE Services
Value 3
 Name: x86pc\undi\DOSUNDI\DOSUndi.0
 Type: REG_SZ
 Data: 224.1.1.4

First bootfile for the DOS boot.

Value 4
 Name: x86pc\undi\DOSUNDI\DOSUndi.1
 Type: REG_SZ
 Data: 224.1.1.5

Second bootfile for the DOS boot.

ProxyDHCP
Key Name: SOFTWARE\Intel\PXE\ProxyDHCP
Class Name:<NO CLASS>
Last Write Time: 11/24/97 - 3:04 PM

Top level for the ProxyDHCP service.
Contains sub-keys for each PC
architecture supported.

Value 0
 Name: Discovery_BCast_Disabled
 Type: REG_DWORD
 Data: 0

Controls whether client is able to
broadcast Discovery requests.
0 => Broadcasting Enabled
1 => Broadcasting Disabled

Value 1
 Name: Discovery_List
 Type: REG_MULTI_SZ
 Data:

A explicit list of servers authorized
to provide bootfiles to the client.
The format for each entry is:
s,n,IP1…IPn
s => bootserver type
n => number of addresses in this list
IP => IP address of server
Each list is a separate string.

Value 2
 Name: Discovery_MCast_Addr
 Type: REG_SZ
 Data: 224.0.1.2

The multicast address for sending
multicast discovery packets.

Value 3
 Name: Discovery_MCast_Disabled
 Type: REG_DWORD
 Data: 0

Disable multicasting discovery
packets.
1 => multicasting disabled
0 => multicasting enabled

Value 4
 Name: Discovery_Server_List_Only
 Type: REG_DWORD
 Data: 0

Enable server list. If enabled client
is to only accept bootfiles from the
list of servers contained in the
Discovery_List registry value.
0 => Disable Discovery_List
1 => Enable Discovery_List

Value 5
 Name: Discovery_Srvr_IP
 Type: REG_SZ
 Data: 128.128.0.2

Unicast IP address of the discovery
server that provides BStrap.0.

Value 6
 Name: PROC_ARCH
 Type: REG_MULTI_SZ
 Data: 0,X86PC

1,NECPC9800

Mapping of Client System Architecture
types to sub- Key Names.

Value 7
 Name: Prompt
 Type: REG_SZ
 Data: 10,Select a boot option

Text and display time for the prompt
displayed after the client menu.

Value 8
 Name: Service_Types
 Type: REG_MULTI_SZ
 Data: 0,BStrapSrv

1,WinNT
2,Intel LCM
3,DOSUNDI
65535,APITest

Mapping of BootServer Types to sub-key
and directory names.

Value 9
 Name: TestOn
 Type: REG_DWORD
 Data: 1

Output packet analysis for client
testing.

Value 10
 Name: TestPath
 Type: REG_SZ
 Data: <Install Dir>\PDK\TestLog

Directory where test log sub-
directories are created when doing
client testing.

Value 11
 Name: UseDHCPPort
 Type: REG_DWORD
 Data: 1

Controls whether the PXE Bootserver
listens on port 67. This should be
turned off if PXE Bootserver shares
the server with a DHCP service.

Intel Corporation Page 28 March 20, 1998

Registry Keys for PXE Services
Key Name: SOFTWARE\Intel\PXE\ProxyDHCP\X86PC
Class Name:<NO CLASS>
Last Write Time: 11/7/97 - 1:10 PM

Key to contain data unique to X86PCs.

Value 0
 Name: Imagefile_Name
 Type: REG_MULTI_SZ
 Data: 0

0
BStrap

Relative path to the BStrap.0.

Value 1
 Name: Vendor_DLL
 Type: REG_SZ
 Data:

<RESERVED> Will point to a DLL that
can provide any vendor options that
are unique to this bootserver.

Value 2
 Name: Vendor_Options
 Type: REG_BINARY
 Data:

<RESERVED> Will provide the ability to
specify vendor options unique to this
bootserver directly in the registry.

Key Name: SOFTWARE\Intel\PXE\ProxyDHCP\X86PC\UNDI
Class Name:<NO CLASS>
Last Write Time: 11/24/97 - 3:03 PM

Key to contain data unique to X86Pcs
with NICs that have UNDI interfaces.

Value 0
 Name: MENU
 Type: REG_MULTI_SZ
 Data: 65535,PXE API Test

3,DOS UNDI
0,Local Boot

Menu list displayed by BStrap.0 on the
client. Each entry is the bootserver
number followed by the menu item text,
separated by a comma. Each menu item
is a separate string.

Key Name:SOFTWARE\Intel\PXE\ProxyDHCP\X86PC\UNDI\APITest
Class Name:<NO CLASS>
Last Write Time: 11/24/97 - 8:46 AM

Contains data for telling the client
how to download the bootfiles for the
API Test Bootserver.

Value 0
 Name: Imagefile_Name
 Type: REG_MULTI_SZ
 Data: 0

1
APITest

Root name of the bootfile along with
the low and high valid index numbers.

Value 1
 Name: Vendor_DLL
 Type: REG_SZ
 Data:

<RESERVED> Will point to a DLL that
can provide any vendor options that
are unique to this bootserver.

Value 2
 Name: Vendor_Options
 Type: REG_BINARY
 Data:

<RESERVED> Will provide the ability to
specify vendor options unique to this
bootserver directly in the registry.

Key Name:SOFTWARE\Intel\PXE\ProxyDHCP\X86PC\UNDI\DOSUNDI
Class Name:<NO CLASS>
Last Write Time: 11/24/97 - 8:46 AM

Contains data for telling the client
how to download the bootfiles for the
DOS UNDI Bootserver.

Value 0
 Name: Imagefile_Name
 Type: REG_MULTI_SZ
 Data: 0

1
DOSUNDI

Root name of the bootfile.

Value 1
 Name: Vendor_DLL
 Type: REG_SZ
 Data:

<RESERVED> Will point to a DLL that
can provide any vendor options that
are unique to this bootserver.

Value 2
 Name: Vendor_Options
 Type: REG_BINARY
 Data:

<RESERVED> Will provide the ability to
specify vendor options unique to this
bootserver directly in the registry.

Intel Corporation Page 29 March 20, 1998

7. Testing PXE

7.1 Tests Provided by PDK
Three different types of tests are provided in the this PDK:

1. Packet Analysis
2. UNDI Stress Test
3. PXE API Tests

7.1.1 Packet Analysis
DHCP packet analysis consists of determining if the packet correctly contains the following options:

Description Option Number
Client machine identifier (GUID) 97
Client system architecture option 93
Client network interface identifier 94
Correct DHCP Msg type 53
Class Identifier set to “PXEClient” 60

If any of these options are missing or the DHCP Message type and class identifier contain incorrect values
the client is considered to fail the compliance test.

7.1.2 UNDI Stress Test
To test the UNDI API with the universal NDIS driver, we copy files with different sizes (maximum file size
is 5MB) from the server's mapped drive to the RAMDisk and then compare the 2 sets of files.

7.1.3 PXE API Test
The "Wired for Management Baseline, Version 1.1a" document specifies a list of API calls to be provided
by the PXE through a common entry that can be obtained through interrupt 1A. The entry procedure for
the API calls takes a parameter block in ES:DI and function number for the call in BX. It returns a success
or failure status in AX and sets the status in parameter block accordingly. All other register contents must
be retained to their original values.

This PXETEST program attempts to verify all the API calls for their existence. It also verifies the contents
of all the registers if modified by the call. It prints the results to a log file. It first tests the APIs in the
following sequence: BINL_INFO, UDP, TFTP and UNDI. Since the PXETEST program shuts down the
connection between the UNDI layer and the UDP/IP protocol stack in the boot ROM, the TFTP and UDP
APIs will not be available if the PXETEST program is run for the second time.

NOTE: This PXETEST program tests a new call GET_IFACE_INFO which is not a part of the "Wired for
Management Baseline, Version 1.1a" document. This API call is not required (is optional) if the UNDI is
implemented for Ethernet. This is needed for non Ethernet implementations of the UNDI for the universal
NDIS to work.

Intel Corporation Page 30 March 20, 1998

The Syntax of the call is as follows:

/* definitions */

#define PXENV_UNDI_GET_IFACE_INFO 0x0013

typedef struct s_PXENV_UNDI_GET_IFACE_INFO {
UINT16 Status; /* OUT: See PXENV_STATUS_xxx constants */
UINT8 IfaceType[16]; /* OUT: Type name of MAC, AsciiZ format */

/* This is used by the Universal NDIS */
/* Driver to fill the driver type in it’s */
/* MAC Service specific characteristic table */
/* refer to NDIS2 specification for available */
/* (or supported) type strings */

UINT32 LinkSpeed; /* OUT: bits/sec */
UINT32 ServiceFlags; /* OUT: as defined in NDIS Spec 2.0X */
UINT32 Reserved[4]; /* OUT: will be filled with 0s till defined */
} t_PXENV_UNDI_GET_IFACE_INFO;

/* API Description */

Opcode: PXENV_UNDI_GET_IFACE_INFO

input: ES:DI points to a t_PXENV_UNDI_GET_IFACE_INFO parameter structure that has been
initialized by the caller.

output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX, with the Carry
Flag set accordingly. The status field in the parameter structure will be set to one of the
values represented by the PXENV_STATUS_xxx constants. If the
PXENV_EXIT_SUCCESS is returned the parameter structure will contain the interface
specific information.

Description: This call, if successful, provides the interface specific information necessary for the
universal NDIS driver to report the correct network interface type supported by UNDI. If this
call is not supported the NDIS driver will report the interface type as Ethernet (DIX+802.3)
and link speed as 10 Mbit.

7.2 Test Logs
During the API Test we create a ramdrive on the client machine with 8MB of extended memory. All the
client test output files will be created on this virtual A drive.

In addition, if the universal NDIS driver successfully loads, the <install directory>\PDK\TESTLOG share of the
bootserver is mapped to a drive by the client and the test log files are copied into the client’s sub-directory.

In addition, the ProxyDHCP service on the test server will place the results of the Packet Analysis test in
log files in the <install directory>\PDK\TESTLOG client sub-directory.

The test logs are cumulative. Therefore the client’s subdirectory should be deleted before performing a
new test boot.

In summary:

• The test logs are located in the sub-directory: <install directory>\PDK\testlog.

• The log files for a particular client machine are in the sub-directory with the last 8 characters of the
client's MAC address.

This sub-directory will contain the files:

TESTSUM.TXT
BINL1.TXT
BINL2.TXT
BINL3.TXT
NDISTEST.TXT
DHCPPKT.TXT

Intel Corporation Page 31 March 20, 1998

TESTSUM.TXT will contain a summary of the results of the PXE API test and the Packet Analysis tests.
The packet analysis summary is first, followed by the summary results of the PXE API test.

The files BINL1.TXT, BINL2.TXT, and BINL3.TXT contain hex dumps of the three packets PXE cached.

NDISTEXT.TXT contains the detailed output from performing a series of file transfers to stress test the
NDIS interface.

DHCPPKT.TXT contains a hex dump of the DHCP_Discover or BINL_Request packet and a detailed
analysis of the PXE options found or missing. DHCPPKT.TXT may contain multiple packet analysis
depending on how many DHCP transactions were performed.

Following are example contents of the TESTSUM.TXT file. This example illustrates the results of a client
that sends a DHCP Discover when it first boots and then follows up with a BINL Request. This client has
failed the compatibility test because it does not include a GUID in the DHCP or BINL packet. (The third
packet analysis is from the DOS TCP/IP stack that is loaded during the API Test. This was a DHCP
transaction that occurred after the client booted.)

The text after the packet analysis indicates the client passed all of the APITests.

==
12/19/97 13:06:20 : Results of Packet Analysis For Client:C90C945A
==

Invalid or missing Client Machine Identifier(GUID) (97,0x61)

FAILED: Packet does not comply with PXE protocol as specified in
Wired for Management Baseline v1.1a due to the errors listed above.

--
END OF ANALYSIS

--

==
12/19/97 13:06:20 : Results of Packet Analysis For Client:C90C945A
==

Invalid or missing Client Machine Identifier(GUID) (97,0x61)

FAILED: Packet does not comply with PXE protocol as specified in
Wired for Management Baseline v1.1a due to the errors listed above.

--
END OF ANALYSIS

--

==
12/19/97 13:07:01 : Results of Packet Analysis For Client:C90C945A
==

Invalid or missing Vendor Class Identifier (60,0x3C)
Invalid or missing Client System Architecture (93,0x5C)
Invalid or missing Client Network Interface Identifier (94,0x5D)
Invalid or missing Client Machine Identifier(GUID) (97,0x61)

FAILED: Packet does not comply with PXE protocol as specified in
Wired for Management Baseline v1.1a due to the errors listed above.

--
END OF ANALYSIS

--

DHCP Discover
Packet

BINL Request
Packet

DHCP Discover from
DOS TCP/IP during

APITest
Note that this is not
a packet generated
by PXE, but rather
one that occurred

after booting.

Intel Corporation Page 32 March 20, 1998

GET_DHCP_DISCOVER: Passed..
GET_DHCP_ACK: Passed..
GET_BINL_REPLY: Passed..
UDP_OPEN: Passed..
UDP_WRITE: Passed..
UDP_READ: Passed..
UDP_CLOSE: Passed..
TFTP_GET_FILE_SIZE: Passed..
TFTP_OPEN: Passed..
TFTP_READ: Passed..
TFTP_CLOSE: Passed..
TFTP_READ_FILE: Passed..
UNDI_SHUTDOWN: Passed..
UNDI_INITIATE_DIAGS: Call is present but not supported.

This is an optional call.
UNDI_INIT: Passed..
UNDI_GET_STAT: Passed..
UNDI_CLEAR_STAT: Passed..
UNDI_OPEN: Passed..
UNDI_GET_INFO: Passed..
UNDI_GET_NIC_TYPE: Passed..
UNDI_GET_IFACE_INFO: Passed..
UNDI_SET_STATION_ADDR: Passed..
UNDI_GET_MCAST_ADDR: Passed..
UNDI_SET_MCAST_ADDR: Passed..
UNDI_SET_PACKET_FILTER: Passed..
UNDI_TRANSMIT: Passed..
UNDI_FORCE_INTERRUPT: Passed..
UNDI_RESET_NIC: Passed..
UNDI_CLOSE: Passed..
UNDI_SHUTDOWN: Passed..

7.3 Initiating the Tests
Packet Analysis testing is enabled by setting the test server registry flags TestOn and TestPath
(Key Name: SOFTWARE\Intel\PXE\ProxyDHCP). TestPath must point to a subdirectory that is shared with the
name “TESTLOG” (i.e. <install directory>\PDK\TESTLOG).

PXE API Test and UNDI Stress Test are initiated by booting the PXE Test from the test server.

Results of API
Testing

Intel Corporation Page 33 March 20, 1998

8. Revision History

8.1 PXE Boot ROM
PXE
PDK

Release
Date

PXE
PDK
Ver #

LSA
Code
Ver#

Wired for
Manage-

ment
Baseline

LSA Code Changes

3/20/98 V2.2 v.99f V1.1a Bug Fixes:
• Corrected bug in TFTP open w/ options. The ROM was not

responding to the TFTP OACK with a TFPT ACK of package zero.
2/11/98 V2.1a v.99e V1.1a Bug Fixes:

• Disabled all debug code in option ROM initialization code. This code
was checking for an enabled game port and removing the option
ROM image if one was found.

1/30/98 V2.1 v.99d V1.1a Bug Fixes:
• The procedure that was written to read the UUID out of the System

Management BIOS System Information (type 1) table, was never
being called. Code added to correctly locate and identify the System
Management BIOS structure table entry point..

12/22/97 V2.0 v.99c V1.1a Enhancements:
Loader

• Source split into multiple modules for stub design. Removed all Intel
specific hardware references from stub version of code.
Base code

• Added the following DHCP options to the parameter request list:
Time Offset (2), Time Server (4), Domain Name Server (6), Host
Name (12) and Domain Name (15).

• Replaced BINL... and BOOTP... messages with DHCP.... Each dot
represents a transmitted packet.

• Removed "Transferring control to bootstrap" message. It was not
internationalizable.

• Added code in udpwrite() to check if the destination IP is a multicast
address before sending an ARP request out on it. For multicast
UNDI is called to convert multicast IP address to MAC address.

• Added code to check second gateway, if a different one was given in
the ProxyDHCP Offer or BINL Reply than was given in the DHCP
Ack. Fixes problem where the client would not find MTFTPD if the
client was between two routers with DHCP and Discovery servers
were past one router and ProxyDHCP was past the other and if the
routers were not configured to communicate with each other.

Bug Fixes:
• Adjusted test to see if ROM should request a BINL packet. The

original test did not take into account a bootfile sent in a Proxy
packet. This is a non-fatal bug.

Intel Corporation Page 34 March 20, 1998

PXE
PDK

Release
Date

PXE
PDK
Ver #

LSA
Code
Ver#

Wired for
Manage-

ment
Baseline

LSA Code Changes

10/13/97 V1.4 v.99b V1.1a Bug Fixes: Functional Problems
UNDI Driver

• Added code to check the AutoNegotiation Complete flag while
detecting the PHY. This fixes a problem with 82558 on a 100 Mbit
network with the WakeOnLan bit set.
Loader

• Removed debug and startup messages during option ROM
initialization to conform with PC98 specification.

• Removed 3 second debug timing delays at the end of option ROM
initialization.

• LSA2 not working while using Soft-ICE during debugging. Added
code to LOM version that will reduce the reported size of extended
memory (Int 15h, AH-88h) by 64KB. This happens only in systems
that do not support POST Memory Manager.
Base Code

• Added code to insure a true DHCP Offer including PXE extensions is
consistently preferred to a ProxyDHCP reply.

• Corrected use of registers in protected-mode TFTP read file API.
Bug was found in-house using new protected-mode API test suite.

• Fixed bug in MTFTP restart. If a client missed the first packet of an
MTFTP restart, they would wait until all network traffic to that
multicast IP addressed stopped, before trying to restart. Clients will
now start listening in on network connections if another client
becomes master.

• Fixed mismatched #defines/equates in header files. Fixes pressing
<Esc> in LOM version of LSA2.

Intel Corporation Page 35 March 20, 1998

PXE
PDK

Release
Date

PXE
PDK
Ver #

LSA
Code
Ver#

Wired for
Manage-

ment
Baseline

LSA Code Changes

9/5/97 V1.3 v.98i V1.1a Bug Fixes: Functional Problems

UNDI Driver
• Added code to shutdown NIC if media test fails. Interrupt vector table

was not being restored upon exit due to media test fail.

Loader
• LOM version of loader no longer corrupts $PMM memory tables

when copying itself into the allocated memory.
• Corrected stack bug in loader. Systems that did not support Int 15h

AX=E820h would hang.

Base Code
• Added code to use gateway IP address from DHCP ACK packet if

the gateway IP address in the BINL REPLY packet is zero.
• MTFTP now quits if it gets a “file not found” error. It used to try to

TFTP the missing file.
• ‘ciaddr’ field in DHCP request message is no longer filled in. This

allows LSA2 to work with the Netware DHCP server.

Bug Fixes: Due to non-compliance w/ Network PC DG spec.

Base Code
• The CLIENT_ARCHITECTURE field in DHCP DISCOVER and BINL

REQUEST packets was changed from one byte, to two bytes, in
network order per the Network PC DG spec..

• New functionality per Wired for Management Baseline v1.1a

UNDI Driver
• Added GET_NIC_TYPE call to UNDI so OS setup programs can

determine the type of underlying NIC.
• Below changes are not required for PXE compliance
• Proposed Network PC DG new functionality

UNDI Driver
• Added GET_IFACE_INFO call to UNDI API so drivers can get

information about H/W interface; specifically, so universal drivers can
determine network media type (Ethernet, Token Ring, etc.) At the
moment, this proposed change is only important for implementations
for non-Ethernet network adapters.

Bug Fixes: Functional Problems in non-compliant legacy systems

Loader
• Fixed hang on HP Vectra machines when user did not press

<Space>. These BIOSes required the option ROM to return control
by restoring the interrupt 19h bootstrap and jumping to the ‘PC/AT
Compatible’ BIOS location of F000:E6F2h.

Enhancements:

Loader
• LSA2 loader now only allocates memory using $PMM, or by reducing

the size of extended memory reported by Int 15h AH=88h. This is to
remove a conflict between our code and Soft-ICE.

Base Code
• Reduced stored DHCP packets to minimum size (548 bytes).

Reduces size of run-time memory by ~3 Kbytes.
• Added code to read UUID from BIOS_INFORMATION structure as

documented in the “System Management BIOS Reference
Specification v2.1

Intel Corporation Page 36 March 20, 1998

PXE
PDK

Release
Date

PXE
PDK
Ver #

LSA
Code
Ver#

Wired for
Manage-

ment
Baseline

LSA Code Changes

7/31/97 V1.2 v.98a V1.1a • Added option negotiation for TSIZE.
• Added new TFTP API call to get file size using TSIZE.
• Number of retries in MTFTP and TFTP reduced from 8 to 4.
• t_jmpbuf structure used in LSA2 library (setjmp() and longjmp() calls)

did not have enough fields. The structure checksum was overwriting
the CPU flags field at the end of the t_jmpbuf structure.

• The s_lsa structure in the LSA2 option ROM initialization loader did
not have storage reserved for the MLID initialized data field.

• LSA2 did not boot in legacy systems that only supported interrupt
19h bootstrap.

• TFTP/UDP packets were not being received in protected-mode on
some NICs.

• TFTP read API was not resetting the buffer size if the TFTP read
failed.

• Now recognizes PXE DHCP and ProxyDHCP packets that contain a
bootfile. BINL communication is skipped.

• Increases the ‘seconds’ field in successive DHCP packets. This
enables some DHCP relay agents to forward the DHCP packets.

6/20/97 V1.1 v.97 V1.0a • Added code to locate ‘best’ location for extended memory copy of
LSA2 using known BIOS extended memory size services. Int 15h w/
AX=E820h, AX=E801h, AH=C7h, AH=8Ah, AX=DA88h & AH=88h.

• Removed all debug output when in protected-mode. Fixes protection
fault in protected-mode.

• Added TFTP/UDP open/read clean-up code when an error occurs.
• Moved all variables used in XMIT ISR into the base-code data

segment. Fixes protection fault in protected-mode.
• Commented out POST Memory Manager allocations because of

internal stack bug in loader.
• Corrected protected-mode segment register assignments.
• Added MODE_SWITCH API call so caller can change to/from

protected-mode.
• Rewrite of core BOOTP/BINL packet processing to support

SuperDHCP and SuperProxy servers.
• Moved PXE Entry Point structure from base-code to MLID.
• Added code to read and restore packet timer to fix ARP timeout bug.
• Added checks for zero length segments when loader is allocating

and copying base-code and MLID.
• Added code to loader to handle MLID initialized data allocation and

copying.
• New fields were added to the TFTP_OPEN and TFTP_READ API

parameter structures.
• Completed multicast TFTP support.
• Added IP address filters in UPD_READ so different TFTP servers

could send different files with the same multicast IP address.
• Corrected UNDI transmit block pointer type flag.
• Added code to compute physical address of TFTP buffer for

protected-mode receiving.
• Removed unused error messages to save space.

5/2/97 V1.0 v.92 V1.0 First distribution.

Intel Corporation Page 37 March 20, 1998

8.2 PXE Services
 PXE PDK
 Release

Date

 PXE
PDK

Version

 Service Code Changes

 12/11/97 V2.0 MTFTP
• N/A

 PXE Bootservers
• Merged ProxyDHCP and BINL into PXE Bootservers.
• Added Bootserver function to dynamical discover bootfiles.

 10/8/97 V1.4 MTFTP
• Added check for multicast OPEN requests which will not allow multiple clients to be

masters at the same time for the same file.
• Corrected error with compiler optimization that resulted in a “slave” client not being able

to become a “master” client.
 BINL

• N/A
 ProxyDHCP

• N/A
 9/5/97 V1.3 MTFTP

• Increased the Time-To-Live field for Multicast packets to allow them to pass through
routers.

 BINL
• N/A

 ProxyDHCP
• N/A

 7/31/97 V1.2 MTFTP
• Performance improvements.
• Negotiation added for file size and buffer size.

 BINL
• Improved packet parsing to recognize illegal packets, such as LSA2 V0.94,and ignore

them
• Corrected number of bytes sent for packet size to include terminating 0XFF flag

 ProxyDHCP
• Initial Release.

Intel Corporation Page 38 March 20, 1998

9. BIOS Support

9.1 Overview
This section discusses BIOS support required for PXE compliance and how it is used by PXE boot
devices (ROMs) and PXE Network Boot Programs (NBPs).

There are four major BIOS components that are used by PXE ROMs and NBPs. These components are:
GUID/UUID (Globally/Universally Unique ID), Wake-up Source, Bootstraps and Memory Management.

GUID: A GUID/UUID provides a way to uniquely identify each compliant machine on a network.

Wake-up Source: Being able to determine the wake-up source gives NBPs the ability to choose an
alternate boot path for a machine. (e.g.: A machine turned on by the power switch can boot from the local
hard disk. A machine turned on by a remote wake-up packet on the network can boot from network.)

Bootstraps: The “BIOS Bootstrap Specification, Version 1.01” is required by the “Wired for Management
Baseline, Version 1.1a”. Legacy bootstrap support (hooking interrupt 18h or 19h) can be implemented, in
addition to PnP/BBS.

Memory Management: At present, the “POST Memory Manager Specification, Version 1.0” is not required
by the “Wired for Management Baseline, Version 1.1a”. It is more reliable and robust method of allocating
and managing extended memory than chaining interrupt 15h. If it is available, it will be used by PXE
ROMs.

9.2 GUID

9.2.1 Detection
Three methods of GUID detection should be supported by PXE compliant ROMs:

• Reading SMBIOS structures through the PnP function interface
• Reading table-based SMBIOS structures
• Reading table-based SYSID structures

9.2.1.1 Reading SMBIOS structures through the PnP function interface:

Using this method, PXE ROMs can make repeated calls to function 51h (Get SMBIOS Structure) until
System Information structure (table 1) is found.

Format of System Information structure:
Offset Spec

Version
Name Length Value Description

00h 2.0+ Type BYTE 1 Component ID Information Indicator
01h 2.0+ Length BYTE 08h or 19h Length dependent on version

supported, 08h for 2.0 or 19h for 2.1.
02h 2.0+ Handle WORD Varies
04h 2.0+ Manufacturer BYTE STRING Number of Null terminated string
05h 2.0+ Product

Name
BYTE STRING Number of Null terminated string

06h 2.0+ Version BYTE STRING Number of Null terminated string
07h 2.0+ Serial Number BYTE STRING Number of Null terminated string
08h 2.1+ GUID 16 BYTEs Varies Globally Unique ID number. If the

value is all FFh, the ID is not currently
present in the system, but is settable.
If the value is all 00h, the ID is not
present in the system.

Intel Corporation Page 39 March 20, 1998

Offset Spec
Version

Name Length Value Description

18h 2.1+ Wake-up
Type

BYTE ENUM Identifies the event that caused the
system to power up.

9.2.1.2 Reading table-based SMBIOS structures:

The SMBIOS Entry Point structure, described below, can be located by application software by searching
for the anchor-string on paragraph (16-byte) boundaries within the physical memory address range
000F0000h to 000FFFFFh. This entry point encapsulates an intermediate anchor string which is used by
some existing DMI browsers.

Note: While the SMBIOS Major and Minor Versions (offsets 06h and 07h) currently duplicate the
information present in the SMBIOS BCD Revision (offset 1Dh), they provide a path for future growth in this
specification. The BCD Revision, for example, provides only a single digit for each of the major and minor
version numbers.

Format of SMBIOS Entry Point structure:
Offset Name Length Description

00h Anchor String 4 BYTEs _SM_, specified as four ASCII characters (5F 53 4D
5F).

04h Entry Point Structure
Checksum

BYTE Checksum of the Entry Point Structure (EPS). This
value, when added to all other bytes in the EPS, will
result in the value 00h (using 8-bit addition
calculations). Values in the EPS are summed
starting at offset 00h, for Entry Point Length bytes.

05h Entry Point Length BYTE Length of the Entry Point Structure, starting with the
Anchor String field, in bytes, currently 1Eh.

06h SMBIOS Major Version BYTE Identifies the major version of this specification
implemented in the table structures, e.g. the value
will be 0Ah for revision 10.22 and 02h for revision
2.1.

07h SMBIOS Minor Version BYTE Identifies the minor version of this specification
implemented in the table structures, e.g. the value
will be 16h for revision 10.22 and 01h for revision
2.1.

08h Maximum Structure Size WORD Size of the largest SMBIOS structure, in bytes. This
is the value returned as StructureSize from the Get
SMBIOS Information function.

0Ah Entry Point Revision BYTE Identifies the EPS revision implemented in this
structure. Since only one revision is currently
defined, the value is set to 0. All other values are
reserved for assignment via this specification.

0Bh -
0Fh

Reserved 5 BYTEs Reserved for future assignment by this specification,
must be set to all 00h.

10h Intermediate anchor string 5 BYTEs _DMI_, specified as five ASCII characters (5F 44 4D
49 5F). Note: This field is paragraph-aligned, to
allow legacy DMI browsers to find this entry point
within the SMBIOS Entry Point Structure.

15h Intermediate Checksum BYTE Checksum of Intermediate Entry Point Structure
(IEPS). This value, when added to all other bytes in
the IEPS, will result in the value 00h (using 8-bit
addition calculations). Values in the IEPS are
summed starting at offset 10h, for 0Fh bytes.

16h Structure Table Length WORD Total length of SMBIOS Structure Table, pointed to
by the Structure Table Address, in bytes.

Intel Corporation Page 40 March 20, 1998

Offset Name Length Description
18h Structure Table Address DWORD The 32-bit physical starting address of the read-

only SMBIOS Structure Table, which can start at
any 32-bit address. This area contains all of the
SMBIOS structures fully packed together. These
structures can then be parsed to produce exactly
the same format as that returned from an Get
SMBIOS Structure function call.

1Ch Number of SMBIOS
Structures

WORD Total number of structures present in the SMBIOS
Structure Table. This is the value returned as
NumStructures from the Get SMBIOS Information
function.

1Dh SMBIOS BCD Revision BYTE Indicates compliance with a revision of this
specification. It is a BCD value where the upper
nibble indicates the major version and the lower
nibble the minor version. For revision 2.1, the
returned value is 21h. If the value is 00h, only the
Major and Minor Versions in offsets 6 and 7 of the
Entry Point Structure provide the version
information.

9.2.1.3 Reading table-based SYSID structures

The SYSID Entry Point structure, described below, can be located by application software by searching for
the anchor-string on paragraph (16-byte) boundaries within the physical memory address range
000E0000h to 000FFFFFh.

The UUID BIOS structure can be found by walking the list of SYSID BIOS structures in the SYSID BIOS
Structure Table.

Format of SYSID Entry Point structure:
Element Length Description

Header/Type 7 Bytes _SYSID_
Checksum 1 Byte Checksum of the SYSID BIOS Entry Point Structure
Length 2 Bytes Total length of SYSID BIOS Structure Table (Set to 011h).
SYSID BIOS Structure
Table Address

4 Bytes 32 bit physical address of the beginning of the SYSID BIOS
Structure Table. This value is BYTE Aligned!!

Number of SYSID BIOS
Structures

2 Bytes Total number of structures within the SYSID BIOS Structure
Table.

SYSID BIOS Revision 1 Byte Revision of the SYSID BIOS Extensions (Set to 00h).

Format of the SYSID BIOS structures:
Element Length Description

Header/Type 6 Bytes _????_
Checksum 1 Byte Checksum of the SYSID BIOS Structure
Length 2 Bytes Total length of SYSID BIOS Structure
Variable Data Portion ?? Bytes Depends on SYSID BIOS Structure Header/Type Field

Format of the UUID BIOS structure:
Element Length Description

Header/Type 6 Bytes _UUID_
Checksum 1 Byte Checksum of the UUID BIOS Structure
Length 2 Bytes Total length of UUID BIOS Structure (Set to 0019h).
Variable Data Portion 16 Bytes Actual UUID data (Initially set all bytes to 0FFh).

Intel Corporation Page 41 March 20, 1998

9.2.2 Programming

9.2.2.1 Purpose:

There are two GUID programming methods that can be supported by PXE bootstrap programs. (Note:
BIOS support for writing GUIDs is not required for PXE compliance. However, it is straightforward,
particularly if SMBIOS 2.1 is supported, and undeniably useful. BIOS vendors are encouraged to provide
support for this capability.)

• Writing SMBIOS structures through the PnP function interface.
• Writing SYSID BIOS structures through the PnP function interface.

9.2.2.2 Writing SMBIOS structures through the PnP function interface

This method of writing and storing GUIDs is accomplished by making a SMBIOS call utilizing the Set
DMBIOS Structure (52h) function.

The format of the Set SMBIOS Structure function is as follows:

short FAR (*entryPoint)(Function, dmiDataBuffer, dmiWorkBuffer, Control, dmiSelector, BiosSelector)

short Function; /* PnP BIOS Function 52h */
unsigned char FAR *dmiDataBuffer; /* Pointer to buffer containing new/change data */
unsigned char FAR *dmiWorkBuffer; /* Pointer to work buffer area for the BIOS */
unsigned char Control; /* Conditions for performing operation */
unsigned short dmiSelector; /* SMBIOS data read/write selector */
unsigned short BiosSelector; /* PnP BIOS readable/writeable selector */

The dmiDataBuffer parameter references a structure of the following format:
Offset Field Length Description

00h Command BYTE Identifies the structure-setting operation to be performed, one of:

00h A single byte of information is to be changed in the
structure identified by StructureHeader

01h A word (two bytes) of information is to be changed in
the structure identified by StructureHeader

02h A double-word (four bytes) of information is to be
changed in the structure identified by
StructureHeader

03h The structure identified by StructureHeader is to be
added tothe SMBIOS structure pool

04h The structure identified by StructureHeader is to be
deleted from the SMBIOS structure pool

05h A string’s value is to be changed in the structure
identified by StructureHeader.

06h-0FFh Reserved for future assignment by this specification.

01h FieldOffset BYTE For a structure change Command, identifies the starting offset
within the changed structure’s fixed data of the to-be-changed
item. For a string-value change Command, identifies the offset
within the structure’s fixed data associated with the string’s
“number”. This field is ignored for all other Commands.

02h ChangeMask DWORD For a structure-change Command, identifies the ANDing mask to
be applied to the existing structure data prior to applying the
ChangeValue. The number of significant bytes within this area is
defined by the Command. This field is ignored for all other
Commands.

Intel Corporation Page 42 March 20, 1998

Offset Field Length Description

06h ChangeValue DWORD For a structure-change Command, identifies the data value to be
ORed with the existing structure data – after applying the
ChangeMask. The number of significant bytes within this area is
defined by the Command. This field is ignored for all other
Commands.

0Ah DataLength WORD For a structure-add Command, identifies the full length of the to-
be-added structure. The length includes the structure header, the
fixed-length portion of the structure, and any string data which
accompanies the added structure – including all null-terminators.
For a string-value change Command, identifies the length of the
string data (including the null-terminator); if the length is 1
(indicating that only the null-terminator is provided), the current
string’s data is deleted so long as the string’s data-access rights
are met. This field is ignored for all other Commands.

0Ch StructureHead
er

4 BYTEs Contains the structure header of the structure to be added,
changed, or deleted.

10h StructureData Var For a structure-add Command, contains the data to be associated
with the SMBIOS Structure identified by the StructureHeader. For
a string-value change Command, contains the string’s data (the
number of characters is identified by DataLength). This field is
ignored for all other Commands.

The dmiWorkBuffer parameter references a work buffer for use by the BIOS in performing the request; the
contents of the buffer are destroyed by the BIOS’ processing. This work buffer must be read/write and
sized to hold the entire SMBIOS structure pool, based on the information returned by Get SMBIOS
Information (50h) function plus the size of any structure to be added by the request. For SMBIOS v2.0
implementations, the pool size is specified by the maximum of (StructureSize * NumStructures) and (when
dmiStorageBase is non-zero) dmiStorageSize; for v2.1 and later implementations, the pool size is
specified by dmiStorageSize.

The Control flag provides a mechanism for indicating to the BIOS whether the set request is to take effect
immediately, or if this is a check to validate the to-be-updated data.

Control is defined as:

Bit 0 0 = Do not set the specified structure, but validate its parameters.
1 = Set the structure immediately.

Bits 1:7 Reserved, must be 0.

If bit 0 of Control is 0, then the dmiDataBuffer values are checked for validity. If any are not valid, then the
function returns DMI_BAD_PARAMETER; if any read-only field is modified, the function returns
DMI_READ_ONLY. Validity checking is useful to determine if the BIOS supports setting a structure field to
a particular value – or whether the BIOS supports writing to a specific structure field. For example, it may
be useful for an OEM to determine beforehand whether the OEM’s BIOS supports a “Reboot to
Diagnostics Now” setting in an OEM-defined structure.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and a limit of at
least dmiStorageSize, so long as the dmiStorageBase returned from Get SMBIOS Information (50h)
function was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory space. If this function is called from protected mode, the caller
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must
be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real

Intel Corporation Page 43 March 20, 1998

mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer
to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and
Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:
If successful - DMI_SUCCESS
If an error occurred, the Error Code will be returned in AX. The FLAGS and all other registers will be
preserved.

Errors:
DMI_BAD_PARAMETER A parameter contains an invalid or unsupported value.
DMI_READ_ONLY A parameter is read-only and differs from the present value – an

attempt was made to modify a read-only value.
DMI_ADD_STRUCTURE_FAILED The desired structure could not be added due to insufficient storage

space.
DMI_INVALID_HANDLE For an add (03h) Command, the structure handle present in the

StructureHeader already exists or, for a change (00h to 02h and
05h) or delete (04h) Command, the structure handle does not exist.

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly
language module:

push BiosSelector
push dmiSelector
push Control
push segment/selector of dmiWorkBuffer ;pointer to BIOS temporary buffer
push offset of dmiWorkBuffer
push segment/selector of dmiDataBuffer ; pointer to structure
push offset of dmiDataBuffer
push SET_DMI_STRUCTURE ; Function number, 52h
call FAR PTR entryPoint
add sp, 16 ; clean stack
cmp ax, DMI_SUCCESS ; Successful?
jne error ; No, go handle error

9.2.2.3 Writing SYSID BIOS structures through the PnP function interface

This method of writing and storing these SYSIDs is accomplished by making a DMI BIOS call utilizing the
DMI Control (54h) Function.

The format of the DMI control Function is as follows:

Function 54h
Sub Function 4007h
Data See Data Structure below. Must have read \ write access.
Control Bit 0 set to 1 (perform operation immediately).
dmiSelector Provided from Function 50h call.
BiosSelector Provided from Function 50h call.

Format of the Data parameter passed:
Offset Name Length Value Description
00h type BYTE Varies Type of data to be written. See type definition table

below.
01h length BYTE Varies Length in bytes of the data to be written.
02h idData DWORD Varies FAR * to actual data to be written.
06h LpDmiWorkBuffer DWORD Varies FAR * to a readable / writeable buffer at least the size

of MinGPNVRWSize.
0Ah SecurityKey 8 bytes Varies Security Key.

Intel Corporation Page 44 March 20, 1998

Type Specifies the type of Data (ID) to be written.
Type

Description
type length idDATA SecurityKey

Write UUID 00h Must be
16d bytes

FAR * to a 16d byte buffer
containing the UUID

Level 3 or above. The security key is
NOT required if the current UUID is
blank.

Write 1394 ID 01h Must be
8d bytes

FAR * to a 8d byte buffer
containing the 1394
Unique ID.

Level 3 or above. The security key is
NOT required if the current 1394ID is
blank.

IdData FAR pointer to a buffer containing the actual data to be written

LpDmiWorkBuffer FAR * to a readable / writeable buffer at least the size of MinGPNVRWSize.
MinGPNVRWSize value can be obtained by making a Get GPNV Information
(Function 55h) call.

SecurityKey An 8 byte security key that meets or exceeds level 3 security (System
Administrator level or above).

9.2.2.3.1 Return Codes:

Upon a successful call the BIOS shall return DMI_SUCCESS to the caller. If an error was made during
the call, the BIOS shall return DMI_BAD_PARAMETER. If this control sub-function is not supported, the
BIOS shall return DMI_INVALID_SUBFUNCTION to the caller.

If the caller does not provide a valid security key and the ID has already been written, the BIOS shall
return a DMI_READ_ONLY error to the caller.

9.3 Remote Wake Up Source

9.3.1 Detection
Three methods of Remote Wake-Up source detection should be implemented by PXE compliant
bootstrap programs.

• Reading SMBIOS structures through the PnP function interface (See section 9.2.1.1 above)
• Reading table-based SMBIOS structures (See section 9.2.1.2 above)
• Int 15h API

9.3.1.1 Int 15h API

One of the ways a PXE compliant bootstrap program can detect the wake-up source is through an Int 15h
API. This API is described below.

Determine source of system wake-up:

Enter:
AX := 2307h
BX := 5755h
Int 15h

Exit:
CF == 1 || AH != 0 Failure. Wake-up source detection not supported by

BIOS.

CF == 0 && AH == 0 Success. Wake-up source detection supported by BIOS.
(CL & 7) == 6 Power switch.
(CL & 7) == 5 LAN
(CL & 7) == 4 COM1 ring
(CL & 7) == 3 Timer

Other values for (CL & 7) are reserved.
All other register contents must be preserved.

Intel Corporation Page 45 March 20, 1998

NOTE: The information returned by this call may be destroyed by reading it. If you do not want to destroy
information, you should try to write it back (see 9.3.2.1 below).

9.3.2 Programming
One method of wake-up source programming should be implemented by PXE compliant bootstrap
programs.

• Int 15h API

9.3.2.1 Int 15h API

If the determined source of system wake-up API call performs a destructive read, the BIOS must also
implement the API call write source of system wake-up. This API is described below.

Write source of system wake-up:

Enter:
AX := 2308h
BX := 5755h
CL (bits 2-0) := 6 Power switch.
CL (bits 2-0) := 5 LAN
CL (bits 2-0) := 4 COM1 ring
CL (bits 2-0) := 3 Timer

CL (bits 7-3) := 0
Int 15h

Exit:
CF == 1 || AH != 0 Failure. Write wake-up source not supported by

BIOS.
CF == 0 && AH == 0 Success. Write wake-up source detection supported

by BIOS.

All other register contents must be preserved.

9.4 Bootstraps
Three common option ROM bootstrap mechanisms are used in PXE compliant boot ROMs:

• Plug and Play/BIOS Boot Specification (PnP/BBS)
• Int 18h
• Int 19h

PnP/BBS is required to be supported in the BIOS by the “Wired for Management Baseline, Version 1.1a”.
If you are designing your PXE option ROM to work in legacy BIOS’s, you will also need to support
bootstrap interrupts 18h and 19h.

NOTE: Bootstrap interrupts 18h and 19h are mutually exclusive.

9.4.1 Plug and Play/BIOS Boot Specification (PnP/BBS)

9.4.1.1 How to tell if your option ROM is running in a PnP/BBS compatible BIOS

If your option ROM is going to be included in a BIOS image and you know that BIOS supports PnP/BBS,
then you can write your option ROM initialization and boot code assuming PnP/BBS will be supported.

If you are writing an option ROM that is going to be included in a NIC that can be placed in any BIOS, you
can detect the presence of PnP/BBS by issuing PnP functions Get Version and Installation Check (60h)
and Get Boot First (65h). If either of these calls are successful, you are in a PnP/BBS compatible BIOS.
At this time, these calls are not required by the PnP/BBS, and your option ROM could be running in a
PnP/BBS BIOS and have no knowledge of this.

Until the PnP/BBS gets updated so there is a definitive detection mechanism, your option ROM cannot
detect if it is running in a PnP/BBS BIOS.

Intel Corporation Page 46 March 20, 1998

9.4.1.2 What is needed to make a NIC option ROM PnP/BBS compatible

The information is covered in detail in the “Plug and Play/BIOS Boot Specification, Version 1.01” and the
“Plug and Play BIOS Specification, Version 1.0A”. This section highlights what is necessary to make an
option ROM PnP/BBS compatible.

PnP Option ROM Header (PnP/ORH)
Offset Size Value Description

00h BYTE 55h Signature byte 1.
01h BYTE AAh Signature byte 2.
02h BYTE Varies Option ROM length in 512-byte blocks.
03h 4 BYTES Varies Initialization entry point.
07h 17 BYTES Varies Reserved.
18h WORD Varies Offset to PCI data structure.
1Ah WORD Varies Offset to expansion header structure.

PnP Expansion Header (PnP/EH)
Offset Size Value Description

00h BYTE ‘$’ Signature byte 1.
01h BYTE ‘P’ Signature byte 2.
02h BYTE ‘n’ Signature byte 3.
03h BYTE ‘P’ Signature byte 4.
04h BYTE 01h Structure revision.
05h BYTE Varies Length (in 16 byte increments).
06h WORD Varies Offset of next header (0000h if none).
08h BYTE 00h Reserved.
09h BYTE Varies Checksum.
0Ah DWORD Varies Device identifier.
0Eh WORD Varies Pointer to manufacturer string (Optional).
10h WORD Varies Pointer to product name string (Optional).
12h 3 BYTES Varies Device type code.
15h BYTE Varies Device indicators.
16h WORD Varies Boot Connection Vector (BCV), 0000h if none.
18h WORD Varies Disconnect Vector (DV), 0000h if none.
1Ah WORD Varies Bootstrap Entry Vector (BEV), 0000h if none.
1Ch WORD 0000h Reserved.
1Eh WORD Varies Static resource information vector (0000h if none).

Intel Corporation Page 47 March 20, 1998

9.4.1.2.1 PnP/BBS Initialization Code Status

PnP/BBS option ROM initialization code needs to return status to the BIOS that an Initial Program Load
(IPL) device has been attached. See the table below for AX register contents. All undefined bits must be
set to zero.

AX Bit Description
8 1 = IPL Device supports INT 13h Block Device format
7 1 = Output Device supports INT 10h Character Output
6 1 = Input Device supports INT 9h Character Input
5:4 00 = No IPL device attached

01 = Unknown whether or not an IPL device is attached
10 = IPL device attached
 (RPL devices have a connection).
11 = Reserved

3:2 00 = No Display device attached
01 = Unknown whether or not a Display device is attached
10 = Display device attached
11 = Reserved

1:0 00 = No Input device attached
01 = Unknown whether or not an Input device is attached
10 = Input device attached
11 = Reserved

9.4.1.2.2 Boot Entry Vector (BEV)

The BEV replaces the bootstrap interrupt 18h, or 19h, code. If this option ROM is selected as the boot
device, the BEV will be entered via a far-call from the system BIOS. If the BEV decides that it does not
want to, or cannot, boot it needs to clean up and return control to the system BIOS via a far-return.

9.4.2 Int 18h
Historically, in legacy BIOSes, Int 18h was used to invoke the built-in ROM BASIC. This was to be done
by any option ROM, or bootstrap program, that was invoked by Int 19h. It was also done by the system
BIOS, if there were no option ROMs or bootstrap programs to run.

Before the Plug and Play/BIOS Boot Specification was defined, some BIOS vendors added to their
BIOSes the ability to select which devices could be boot devices, and in what order to try to boot them.

At first, you could select from Floppy and Hard disk. Then, CD-ROMs were added to the list. Finally,
Network was added. The limitation here, was that you could only have one of each type of bootable
device. If you had two bootable network cards, there was no way to define the order that they should be
tried; or even which one should be tried.

9.4.2.1 How the BIOS detects network boot devices

BIOSes that support Int 18h boot order detected network boot devices by checking to see if the option
ROM would hook Int 18h during initialization. If an option ROM hooks Int 18h, and Network was the first
bootable device in the boot order list, the option ROM that hooked Int 18h would be called by the system
BIOS. There was no checking to see if the option ROM really was a network device.

9.4.3 Int 19h (Legacy)
If your option ROM is being designed to work in legacy BIOSes, it will need to hook bootstrap interrupt 19h
during option ROM initialization, before returning control to the system BIOS. If there is more than one
device that hooks Int 19h, the last device that does so becomes the boot device.

Intel Corporation Page 48 March 20, 1998

9.5 Memory Management
Historically, in legacy BIOSes, Int 18h was used to invoke the built-in ROM BASIC. This was to be done
by any option ROM, or bootstrap program, that was invoked by Int 19h. It was also done by the system
BIOS, if there were no option ROMs or bootstrap programs to run.

Before the Plug and Play/BIOS Boot Specification was defined, some BIOS vendors added to their
BIOSes the ability to select which devices could be boot devices, and in what order to try to boot them.

At first, you could select from Floppy and Hard disk. Then, CD-ROMs were added to the list. Finally,
Network was added. The limitation here, was that you could only have one of each type of bootable
device. If you had two bootable network cards, there was no way to define the order that they should be
tried; or even which one should be tried.

9.5.1 POST Memory Manager
If POST Memory Manager (PMM) is available, it must be used by PXE option ROMs. How PMM is
detected and used is covered in the “POST Memory Manager Specification, Version 1.0”.

9.5.1.1 Detecting PMM Services

A data structure exists within the BIOS for PMM presence detection. The PMM Structure is located in the
system BIOS address space on a paragraph boundary between segment addresses E000h and FFFFh.
There will be only one PMM Structure in the system BIOS. The presence of the PMM Structure indicates
that the PMM Services are present and available for calling. For now, the only PMM service used by PXE
option ROMs in pmmAllocate.

PMM Structure
Offset Name Size Value Description

00h Signature 4 Bytes ‘$PMM’ PMM Structure signature. This signature starts on a
paragraph boundary. ‘$’ is at byte 0.

04h Revision 1 Byte 01h Structure revision.

05h Length 1 Byte varies Length of this structure in bytes.

06h Checksum 1 Byte varies Checksum update field. For the structure to be valid, the
sum of all bytes, including this one, must be zero.

07h EntryPoint 4 Bytes varies Far pointer to PMM API entry point. This call is only
available during option ROM initialization.

0Bh Reserved 5 Bytes 0 Reserved

9.5.1.2 pmmAllocate

The pmmAllocate function attempts to allocate a memory block of the specified type and size, and return
the adress of the memory block to the caller. The memory block is a contiguous array of paragraphs
whose size is specified by the length parameter. The contents of the allocated memory block are
undefined.

UINT32 (far *pmm.EntryPoint)(
UINT16 function, // 0 for pmmAllocate
UINT32 length, // Number of 16-byte paragraphs to allocate
UINT32 handle, // 32-bit handle to assign to memory block
UINT16 flags // Bit flags specifying options
);

function
0 for pmmAllocate. Invalid values for the function parameter (3..65535) cause an error value of
FFFFFFFFh to be returned, signaling that the function is not supported.

Intel Corporation Page 49 March 20, 1998

length
The size of the requested memory block in paragraphs. If the length is zero, no memory is allocated and
the value returned is the size of the largest memory block available for the memory type specified in the
flags parameter. The alignment bit in the flags register is ignored when calculating the largest memory
block available.

handle
A client-specified identifier to be associated with the allocated memory block. A handle of FFFFFFFFh
indicates that no identifier should be associated with the block. Such a memory block is known as an
‘anonymous’ memory block and cannot be found using the pmmFind function. If a specified handle for a
requested memory block is already used in a currently allocated memory block, an error value of zero is
returned.

flags
A bitmap used by the client to designate options regarding memory allocation.

Bits Field Value Description
1:0 flags.MemoryType 1..3 0 = Invalid

1 = Conventional memory (0 to 1MB)
2 = Extended memory (1MB to 4GB)
3 = Conventional or extended memory

2 flags.Alignment 0..1 0 = No alignment
1 = Use alignment from the length parameter

15:3 flags.Reserved 0 Reserved. Must be zero.

9.5.2 Int 15h
If PMM is not available, PXE option ROMs should assume that they are in a legacy BIOS and allocate
extended memory by chaining Int 15h, service AH=88h (Get Extended Memory Size), and reduce the
amount of memory reported by this service.

This method of extended memory management is not recommended, because not all option ROMs and
applications will respect the reduced memory size.

Intel Corporation Page 50 March 20, 1998

10. Third Party Design Support

The following independent SW vendors (ISV) are both available to provide design support for PXE
compliant boot roms.

Lanworks Technologies Inc
Contact: Mark Kuess
2425 Skymark Ave
Mississauga, ON,
CANADA L4W 4Y6
Tel: (905) 238-5528 ext 166 Fax: (905) 238-9407
Email: mark@lanworks.com
Internet: http://www.lanworks.com/

Dirk Koeppen Incom-Beratungs-GmbH
Contact: Dirk Koeppen
Holzwiesenweg 22
D-63073 Offenbach,
Germany
Tel: 011 49 69 89 3000 Fax: 011 49 69 89 3004
Email: dirk@incom.de
Internet: http://www.incom.de/

In addition, Incom-Beratungs-GmbH provides design support for PXE services and OS loaders.

Intel Corporation Page 51 March 20, 1998

11. LSA2 Operation and Troubleshooting FAQs

 Q1. How does the LSA2 boot PROM begin execution?

 A1. LSA2 is implemented as a standard PC/AT x86 boot PROM. It is called by the system BIOS during option
ROM scan. If it is running in a system that supports the Plug and Play (PnP) BIOS Boot Specification (BBS), it
returns control to the system BIOS identifying itself as a valid Initial Program Load (IPL) device. If it is not in a
PnP/BBS system, it hooks interrupt vector 18h and returns control to the BIOS.

 Q2. Why are there two different versions of the LSA2 for the Intel 82557/82558-based network controllers?

 A2. The first version of the LSA2 (e100b.nic) is designed to run from the boot PROM of a NIC. This code will only
take 2 KB of upper memory. When the device boots, code is copied from the boot PROM into the top of free base
memory.

 The second version of the LSA2 (e100b.ld) is designed to run from the BIOS boot PROM on the motherboard, like a
system with built-in video. This code will take 23 KB of upper memory during option ROM scan, all but 2 KB will
be copied into the top of extended memory (see Q3) before control is returned to the BIOS. When the device boots,
code is copied from extended memory into the top of free base memory.

 Q3. Why does the BIOS lock up during option ROM scan after running e100b.ld?

 A3. Some BIOS’s are not restoring the correct Global Descriptor Table (GDT) when the Protected Mode Copy (Int
15h, AH=87h) service is run during option ROM scan. These BIOS’s are usually in a flat memory model during
option ROM scan, and the Protected Mode Copy service returns with the processor in real-mode.

 You can use the NIC version (e100b.nic) to test the rest of the LSA2 code with a BIOS that has the Protected Mode
Copy bug.

 To fix this bug, the BIOS needs to restore the correct GDT while in option ROM scan.

 Q4. How is LSA2 PROM selected to be the boot device?

 A4. The LSA2 is a standard PCI/PnP option ROM.

 If the LSA2 is placed into a BIOS that supports PnP/BBS (BIOS Boot Specification), the BIOS should insert a
network boot device into the boot order list.

 If the LSA2 is placed into a BIOS that does not support PnP/BBS, that BIOS must support network devices that
hook interrupt vector 18h. After the LSA2 returns control to the BIOS (at the end of the option ROM initialization
call), the BIOS should check to see if Int 18h has changed. If it has, the BIOS should assume that a network boot
device has hooked Int 18h and give the user the ability to select network boot in the CMOS setup. Normally, a BIOS
gives the user the ability to boot drive A:, C:, and the CD-ROM drive. It now needs to add network to the list of boot
devices.

 Q5. Our BIOS supports PnP/BBS. Why does the LSA2 still hook bootstrap interrupt 18h (or 19h)?

 A5. If you are putting the LSA2 into a BIOS that supports PnP/BBS v1.01 and the LSA2 is still hooking bootstrap
interrupt 18h, then the LSA2 cannot detect PnP/BBS support in your BIOS.

 Please verify that:
1. PnP installation check structure is paragraph (16 byte) aligned between addresses E0000h and FFFF0h.
2. The PnP installation check structure is valid during option ROM initialization.

Intel Corporation Page 52 March 20, 1998

3. The BIOS supports function 60h, Get Version and Installation Check. This is the only way that LSA2 can detect
PnP/BBS support.

 If you are implementing your own PXE boot ROM image that will be going into a LOM (LAN-on-motherboard), and
you know the BIOS supports PnP/BBS, you do not have to use function 60h to check for PnP/BBS. This is only a
requirement for NIC boot ROM images. They can be placed into systems that have a PnP BIOS, but do not support
PnP.

 Q6. Does LSA2 use POST Memory Manager if it is supported in the system BIOS?

 A7. Yes, the LOM version (e100b.ld) will use POST Memory Manager if it is available. LSA2 will allocate a 64KB
block using POST Memory Manager, if this allocation fails, it will fall back to hooking the extended memory size
service (Interrupt 15h, AH=88h) and reducing the reported size of extended memory by 64KB.

